Have a personal or library account? Click to login
Lipid content and wastewater treatment potential of Chlorella vulgaris and Scenedesmus obliquus isolated from Uzuncayır Dam Lake Cover

Lipid content and wastewater treatment potential of Chlorella vulgaris and Scenedesmus obliquus isolated from Uzuncayır Dam Lake

Open Access
|Oct 2024

References

  1. Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences, 19(3), 257–275. https://doi.org/10.1016/j.sjbs.2012.04.005 PMID:24936135
  2. Aburai, N., Kunishima, R., Iijima, F., & Fujii, K. (2020). Effects of light-emitting diodes (LEDs) on lipid production of the aerial microalga Coccomyxa sp. KGU-D001 under liquid- and aerial-phase conditions. Biotechnology Journal, 323(2020), 274–282. https://doi.org/10.1016/j.jbiotec.2020.09.005 PMID:32916185
  3. Adalioğlu, S., & Caliskan, G. (2020). Effect of Nutrient, Light Intensity and Temperature on the Growth Rates and Metabolism of a Stress-Resistant Bacillariophyta–Entomoneis sp.-in Izmir Bay (Aegean Sea). Mediterranean Marine Science, 21(1), 1–10. https://doi.org/10.12681/mms.19439
  4. Ahmad, F. A. U. K. Y., Khan, A. U., & Yasar, A. (2013). The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Bot, 45(S1), 461-465. https://www.pakbs.org/pjbot/PDFs/45(S1)/61.pdf.06.27.2022
  5. Ahmed Al Darmaki, L. G., Talebi, S., Al-Rajhi, S., & Tahir Al-Barwani, Z. A. (2012). Cultivation and characterization of microalgae for wastewater treatment. Proc World Congr Eng 1, 4-7.
  6. Barsanti, L., & Gualtieri, P. (2022). Algae: anatomy, biochemistry, and biotechnology. 2nd Edition. London, Taylor & Francis Group, CRC press. https://doi.org/10.1201/b16544
  7. Bischoff, H. W., & Bold, H. C. 1963. Phycological Studies IV. Some Soil Algae from Enchanted Rock and Related Algal Species. University of Texas Publication No. 6318, 95 Austin, Texas.
  8. Bold, H. C. 1942. The cultivation of algae. The Botanical Review, 8(2), 69-138. https://doi.org/10.1007/BF02879474
  9. Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2013). Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource Technology, 143(2013), 1–9. https://doi.org/10.1016/j.biortech.2013.05.105 PMID:23774290
  10. Chai, W. S., Chew, C. H., Munawaroh, H. S. H., Ashokkumar, V., Cheng, C. K., Park, Y. K., & Show, P. L. (2021). Microalgae and ammonia: A review on inter-relationship. Fuel, 303(2021), 121303. https://doi.org/10.1016/j.fuel.2021.121303
  11. Chen, Z., Gong, Y., Fang, X., & Hu, H. (2012). Scenedesmus sp. NJ-1 isolated from Antarctica: A suitable renewable lipid source for biodiesel production. World Journal of Microbiology & Biotechnology, 28(11), 3219–3225. https://doi.org/10.1007/s11274-012-1132-0 PMID:22851191
  12. Choi, H. J. (2016). Dairy wastewater treatment using microalgae for potential biodiesel application. Environmental Engineering Research, 21(4), 393–400. https://doi.org/10.4491/eer.2015.151
  13. Chuck, C. J., Bannister, C. D., Hawley, J. G., Davidson, M. G., La Bruna, I., & Paine, A. (2009). Predictive model to assess the molecular structure of biodiesel fuel. Energy & Fuels, 23(4), 2290–2294. https://doi.org/10.1021/ef801085s
  14. Courchesne, N. M. D., Parisien, A., Wang, B., & Lan, C. Q. (2009). Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. Biotechnology Journal, 141(1-2), 31–41. https://doi.org/10.1016/j.jbiotec.2009.02.018 PMID:19428728
  15. Darki, B. Z., Seyfabadi, J., & Fayazi, S. (2017). Effect of nutrients on total lipid content and fatty acids profile of Scenedesmus obliquus. Braz Arch Biol Technol 60. https://doi.org/10.1590/1678-4324-2017160304
  16. El-Kassas, H. Y. (2013). Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions. Egyptian Journal of Aquatic Research, 39(4), 233–239. https://doi.org/10.1016/j.ejar.2013.12.007
  17. Eltem, R. (2001). Wastewaters and Treatment, Ege University Faculty of Science Publications (Atıksular ve arıtım. Ege Üniversitesi Fen Fakültesi Yayınları), 172.
  18. Fadeyi, O., Dzantor, K., & Adeleke, E. (2016). Assessment of biomass productivities of Chlorella vulgaris and Scenedesmus obliquus in defined media and municipal wastewater at varying concentration of nitrogen. Journal of Water Resource and Protection, 8(2), 217–225. https://doi.org/10.4236/jwarp.2016.82018
  19. Fernandez-Marchante, C. M., Asensio, Y., Lobato, J., Villaseñor, J., Cañizares, P., & Rodrigo, M. A. (2018). Influence of hydraulic retention time and carbon loading rate on the production of algae. Biotechnology Journal, 282(2018), 70–79. https://doi.org/10.1016/j.jbiotec.2018.07.012 PMID:29990569
  20. Franchino, M., Comino, E., Bona, F., & Riggio, V. A. (2013). Growth of three microalgae strains and nutrient removal from an agro-zootechnical digestate. Chemosphere, 92(6), 738–744. https://doi.org/10.1016/j.chemosphere.2013.04.023 PMID:23706373
  21. Griffiths, M. J., & Harrison, S. T. (2009). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 21(5), 493–507. https://doi.org/10.1007/s10811-008-9392-7
  22. Hadrich, B., Akremi, I., Dammak, M., Barkallah, M., Fendri, I., & Abdelkafi, S. (2018). Optimization of lipids’ ultrasonic extraction and production from Chlorella sp. using response-surface methodology. Lipids in Health and Disease, 17(1), 87. https://doi.org/10.1186/s12944-018-0702-z PMID:29665818
  23. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. The Plant Journal, 54(4), 621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x PMID:18476868
  24. Jiang, X., Hu, Y., Bedell, J. H., Xie, D., & Wright, A. L. (2011). Soil organic carbon and nutrient content in aggregate-size fractions of a subtropical rice soil under variable tillage. Soil Use and Management, 27(1), 28–35. https://doi.org/10.1111/j.1475-2743.2010.00308.x
  25. Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: A review. Energies, 6(9), 4607–4638. https://doi.org/10.3390/en6094607
  26. Karimi-Maleh, H., Shafieizadeh, M., Taher, M. A., Opoku, F., Kiarii, E. M., Govender, P. P., Ranjbari, S., Rezapour, M., & Orooji, Y. (2020). The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. Journal of Molecular Liquids, 298, 112040. https://doi.org/10.1016/j.molliq.2019.112040
  27. Khaldi, H., Maatoug, M., Dube, C. S., Ncube, M., Tandlich, R., Heilmeier, H.,Laubscher, R.K., Dellal, A. (2017). Efficiency of wastewater treatment by a mixture of sludge and microalgae. Int j fundam appl sci 9(3), 1454-1472. https://doi.org/10.4314/jfas.v9i3.13
  28. Komarek, J., & Fott, B. (1983). Chlorophyceae (Grunalgen) ordnung: Chlorococcales. In G. Huber-Pestalozzi (Ed.), Das Phytoplankton des Suswassers.
  29. Komarek, J., & Ruzicka, J. (1969). Effect of temperature on the growth and variability of Scenedesmus quadricauda (Turp.) Breb. In B. Fott (Ed.), Studies in Phycology. Academia, Pregue, (pp. 262–292).
  30. Lee, S. J., Yoon, B. D., & Oh, H. M. (1998). Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques, 12(7), 553–556. https://doi.org/10.1023/A:1008811716448
  31. Martínez, M. E., Sánchez, S., Jimenez, J. M., El Yousfi, F., & Munoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technology, 73(3), 263–272. https://doi.org/10.1016/S0960-8524(99)00121-2
  32. Min, M., Wang, L., Li, Y., Mohr, M. J., Hu, B., Zhou, W., Chen, P., & Ruan, R. (2011). Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Biotechnology and Applied Biochemistry, 165(1), 123–137. https://doi.org/10.1007/s12010-011-9238-7 PMID:21494756
  33. Nomura, M., Kamogawa, H., Susanto, E., Kawagoe, C., Yasui, H., Saga, N., Hosokawa, M., & Miyashita, K. (2013). Seasonal variations of total lipids, fatty acid composition, and fucoxanthin contents of Sargassum horneri (Turner) and Cystoseira hakodatensis (Yendo) from the northern seashore of Japan. Journal of Applied Phycology, 25(4), 1159–1169. https://doi.org/10.1007/s10811-012-9934-x
  34. Palmer, C. M. (1969). A composite rating of algae tolerating organic pollution2. Journal of Phycology, 5(1), 78–82. https://doi.org/10.1111/j.1529-8817.1969.tb02581.x PMID:27097257
  35. Passos, F., & Ferrer, I. (2014). Microalgae conversion to biogas: Thermal pretreatment contribution on net energy production. Environmental Science & Technology, 48(12), 7171–7178. https://doi.org/10.1021/es500982v PMID:24825469
  36. Passos, F., García, J., & Ferrer, I. (2013). Impact of low temperature pretreatment on the anaerobic digestion of microalgal biomass. Bioresource Technology, 138(2013), 79–86. https://doi.org/10.1016/j.biortech.2013.03.114 PMID:23619135
  37. Pradhan, D., Sukla, L. B., Mishra, B. B., & Devi, N. (2019). Biosorption for removal of hexavalent chromium using microalgae Scenedesmus sp. Journal of Cleaner Production, 209(2019), 617–629. https://doi.org/10.1016/j.jclepro.2018.10.288
  38. Qu, F., Jin, W., Zhou, X., Wang, M., Chen, C., Tu, R., Han, S. F., He, Z., & Li, S. F. (2020). Nitrogen ion beam implantation for enhanced lipid accumulation of Scenedesmus obliquus in municipal wastewater. Biomass and Bioenergy, 134(2020), 105483. https://doi.org/10.1016/j.biombioe.2020.105483
  39. Satpal, K. A., & Khambete, A. K. (2016). Waste water treatment using micro-algae—A review paper. Int J Eng Technol Manag Appl Sci (Conference: IJETMAS), 4(2), 188–192.
  40. Scarponi, P., Volpi Ghirardini, A. M., Bravi, M., & Cavinato, C. (2021). Evaluation of Chlorella vulgaris and Scenedesmus obliquus growth on pretreated organic solid waste digestate. Waste Management (New York, N.Y.), 119(2021), 235–241. https://doi.org/10.1016/j.wasman.2020.09.047 PMID:33075620
  41. Schnurr, P. J., & Allen, D. G. (2015). Factors affecting algae biofilm growth and lipid production: A review. Renewable & Sustainable Energy Reviews, 52(2015), 418–429. https://doi.org/10.1016/j.rser.2015.07.090
  42. Sekaran, G., Karthikeyan, S., Nagalakshmi, C., & Mandal, A. B. (2013). Integrated Bacillus sp. immobilized cell reactor and Synechocystis sp. algal reactor for the treatment of tannery wastewater. Environmental Science and Pollution Research International, 20(1), 281–291. https://doi.org/10.1007/s11356-012-0891-3 PMID:22528997
  43. Sen, B., Alp, M.T., Sonmez, F., Kocer, M.A.T., & Canpolat, O. (2013). Relationship of algae to water pollution and waste water treatment. Water treatment, 335-354. https://doi.org/10.5772/51927
  44. Seyhaneyıldız Can, Ş., Demir, V., & Can, E. (2015). Evaluating the dilution of municipal wastewater on biomass increase, lipid production and nutrient removal by the blue-green algae Spirulina platensis (Geitler). Fresenius Environmental Bulletin, 24(3), 904–909.
  45. Seyhaneyıldız Can, Ş., Koru, E., Cirik, S., Turan, G., Tekoğul, H., & Subakan, T. (2021). Effects of Temperature and Nitrogen Concentration on Growth and Lipid Accumulation of the Green Algae Chlorella vulgaris for Biodiesel. Acta Nat Sci, 2(2), 101–108. https://doi.org/10.29329/actanatsci.2021.350.03
  46. Shanmugam, S., Mathimani, T., Anto, S., Sudhakar, M. P., Kumar, S. S., & Pugazhendhi, A. (2020). Cell density, Lipidomic profile, and fatty acid characterization as selection criteria in bioprospecting of microalgae and cyanobacterium for biodiesel production. Bioresource Technology, 304(2020), 123061. https://doi.org/10.1016/j.biortech.2020.123061 PMID:32127245
  47. Soeder, C. J., & Hegewald, E. (1989). Scenedesmus. In M. A. Borowitzka & L. J. Borowitzka (Eds.), Microalgal Biotechnology (pp. 59–84). Cambridge University Press.
  48. Starr, R. C., & Zeikus, J. A. (1993). UTEX—The culture collection of algae at the University of Texas at Austin 1993 List of cultures 1. Journal of Phycology, 29(s2), 90-95. https://doi.org/10.1111/j.0022-3646.1993.00001.x
  49. Tedesco, M. A., & Duerr, E. O. (1989). Light, temperature and nitrogen starvation effects on the total lipid and fatty acid content and composition of Spirulina platensis UTEX 1928. Journal of Applied Phycology, 1(3), 201–209. https://doi.org/10.1007/BF00003646
  50. Telci, I., Sahin-Yaglioglu, A., Eser, F., Aksit, H., Demirtas, I., & Tekin, S. (2014). Comparison of seed oil composition of Nigella sativa L. and N. damascena L. during seed maturation stages. Journal of the American Oil Chemists’. Journal of the American Oil Chemists’ Society, 91(10), 1723–1729. https://doi.org/10.1007/s11746-014-2513-3
  51. Ullah, M. R., Akhter, M., Khan, A. B. S., Hasan, M. M., Bosu, A., Yasmin, F., Haque, M. A., Islam M. A., Mahmud, Y. (2023). Seaweed: A prominent source of protein and other nutrients. Sustainable Aquatic Research, 2(2), 145–166. https://doi.org/10.5281/zenodo.8302372
  52. Villar-Navarro, E., Baena-Nogueras, R. M., Paniw, M., Perales, J. A., & Lara-Martín, P. A. (2018). Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes. Water Research, 139(2018), 19–29. https://doi.org/10.1016/j.watres.2018.03.072
  53. Yadav, G., Shanmugam, S., Sivaramakrishnan, R., Kumar, D., Mathimani, T., Brindhadevi, K., Pugazhendhi, A., & Rajendran, K. (2021). Mechanism and challenges behind algae as a wastewater treatment choice for bioenergy production and beyond. Fuel, 285(2021), 119093. https://doi.org/10.1016/j.fuel.2020.119093
  54. Ye, S., Gao, L., Zhao, J., An, M., Wu, H., & Li, M. (2020). Simultaneous wastewater treatment and lipid production by Scenedesmus sp. HXY2. Bioresource Technology, 302(2020), 122903. https://doi.org/10.1016/j.biortech.2020.122903 PMID:32018084
  55. Zhila, N. O., Kalacheva, G. S., & Volova, T. G. (2011). Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. Journal of Applied Phycology, 23(1), 47–52. https://doi.org/10.1007/s10811-010-9532-8
  56. Zhou, W., Wang, Z., Xu, J., & Ma, L. (2018). Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. Journal of Bioscience and Bioengineering, 126(5), 644–648. https://doi.org/10.1016/j.jbiosc.2018.05.006
DOI: https://doi.org/10.26881/oahs-2024.3.09 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 310 - 320
Submitted on: Apr 13, 2022
Accepted on: Dec 22, 2023
Published on: Oct 11, 2024
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Şafak Seyhaneyıldız Can, Erkan Can, Kadir Yılmaz, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.