Have a personal or library account? Click to login
Bioassays and virtual screening to identify potent natural antifouling compounds from the brown macroalga Dictyota dichotoma Cover

Bioassays and virtual screening to identify potent natural antifouling compounds from the brown macroalga Dictyota dichotoma

Open Access
|Oct 2024

References

  1. Alarif, W. M., Al-Lihaibi, S. S., Abdel-Lateff, A., & Ayyad, S. E. N. (2011). New antifungal cholestane and aldehyde derivatives from the red alga Laurencia papillosa. Natural Product Communications, 6(12), 1934578X1100601208.
  2. Arabshahi, H. J., Trobec, T., Foulon, V., Hellio, C., Frangež, R., Sepčić, K., Cahill, P., & Svenson, J. (2021). Using virtual AChE homology screening to identify small molecules with the ability to inhibit marine biofouling. Frontiers in Marine Science, 8, 762287. Advance online publication. https://doi.org/10.3389/fmars.2021.762287
  3. Ba-Akdah, M. A., Satheesh, S., & Al-Sofyani, A. A. (2016). Habitat preference and seasonal variability of epifaunal assemblages associated with macroalgal beds on the Central Red Sea coast, Saudi Arabia. Journal of the Marine Biological Association of the United Kingdom, 96, 1457–1467. https://doi.org/10.1017/S0025315415001678
  4. Bakar, K. A. M. A. R. I. A. H., Mohamad, H., Latip, J. A. L. I. F. A. H., Tan, H. S., & Herng, G. M. (2017). Fatty acids compositions of Sargassum granuliferum and Dictyota dichotoma and their anti-fouling activities. Journal of Sustainability Science and Management, 12(2), 8–16.
  5. Balqadi, A. A., Salama, A. J., & Satheesh, S. (2018). Microfouling development on artificial substrates deployed in the central Red Sea. Oceanologia, 60, 219–231. https://doi.org/10.1016/j.oceano.2017.10.006
  6. Bazes, A., Silkina, A., Douzenel, P., Faÿ, F., Kervarec, N., Morin, D., Berge, J. P., & Bourgougnon, N. (2009). Investigation of the antifouling constituents from the brown alga Sargassum muticum (Yendo) Fensholt. Journal of Applied Phycology, 21(4), 395–403. https://doi.org/10.1007/s10811-008-9382-9
  7. Blunt, J. W., Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2018). Marine natural products. Natural Product Reports, 35, 8–53. https://doi.org/10.1039/C7NP00052A PMID:29335692
  8. Chen, J., Li, H., Zhao, Z., Xia, X., Li, B., Zhang, J., & Yan, X. (2018). Diterpenes from the marine algae of the genus Dictyota. Marine Drugs, 16(5), 159. https://doi.org/10.3390/md16050159 PMID:29751686
  9. Cho, C. H., Lu, Y. A., Kim, M. Y., Jeon, Y. J., & Lee, S. H. (2022). Therapeutic potential of seaweed-derived bioactive compounds for cardiovascular disease treatment. Applied Sciences (Basel, Switzerland), 12(3), 1025. https://doi.org/10.3390/app12031025
  10. Coffey, B. M., & Anderson, G. G. (2014) Biofilm formation in the 96-well microtiter plate. In: Filloux A, Ramos JL (eds) Pseudomonas methods and protocols, methods in molecular biology (methods and protocols), vol 1149. Humana Press, New York, pp 631–641. https://doi.org/10.1007/978-1-4939-0473-0_48
  11. Cotas, J., Leandro, A., Monteiro, P., Pacheco, D., Figueirinha, A., Gonçalves, A. M. M., da Silva, G. J., & Pereira, L. (2020). Seaweed phenolics: From extraction to applications. Marine Drugs, 18(8), 384. https://doi.org/10.3390/md18080384 PMID:32722220
  12. Dahms, H. U., & Dobretsov, S. (2017). Antifouling compounds from marine macroalgae. Marine Drugs, 15, 265. https://doi.org/10.3390/md15090265 PMID:28846625
  13. Das, B., & Srinivas, K. V. N. S. (1993). Two New Sterols from the Marine Red Alga Gracilaria edulis. Planta Medica, 59(6), 572–573. https://doi.org/10.1055/s-2006-959768 PMID:17230370
  14. Dashtegol, S., Motalebi Moghanchoghi, A., Razavilar, V., & Mortazavi, M. S. (2021). Isolation and semi purification of steroid compounds from Colpomenia sinuosa (Derbès & Solier, 1851) algae of the Persian Gulf and in vitro screening of antimicrobial effects. Iranian Journal of Fisheries Science, 20(1), 129–140. https://doi.org/10.22092/ijfs.2021.123503
  15. Dassamiour, S., Bensaad, M. S., Hambaba, L., Melakhessou, M. A., Sami, R., Al-Mushhin, A. A., Aljahani, A. H., & Al Masoudi, L. M. (2022). In silico investigation of some compounds from the N-Butanol extract of Centaurea tougourensis Boiss. & Reut. Crystals, 12(3), 355. https://doi.org/10.3390/cryst12030355
  16. El-Din, S. M. M., & El-Ahwany, A. M. (2016). Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). Journal of Taibah University for Science : JTUSCI, 10(4), 471–484. https://doi.org/10.1016/j.jtusci.2015.06.004
  17. Gadhi, A. A., El-Sherbiny, M. M., Al-Sofynai, A. M., Ba-Akdah, M. A., & Satheesh, S. (2018). Antimicrofouling activities of marine macroalga Dictyota dichotoma from the Red Sea. Journal of Agricultural and Marine Sciences, 23, 58–67.
  18. Ghallab, D. S., Shawky, E., Ibrahim, R. S., & Mohyeldin, M. M. (2022). Comprehensive metabolomics unveil the discriminatory metabolites of some Mediterranean Sea marine algae in relation to their cytotoxic activities. Scientific Reports, 12(1), 8094. https://doi.org/10.1038/s41598-022-12265-7 PMID:35577889
  19. Gohad, N. V., Aldred, N., Hartshorn, C. M., Jong Lee, Y., Cicerone, M. T., Orihuela, B., Clare, A. S., Rittschof, D., & Mount, A. S. (2014). Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nature Communications, 5, 4414. Advance online publication. https://doi.org/10.1038/ncomms5414 PMID:25014570
  20. Gu, Y., Yu, L., Mou, J., Wu, D., Xu, M., Zhou, P., & Ren, Y. (2020). Research strategies to develop environmentally friendly marine antifouling coatings. Marine Drugs, 18(7), 371. https://doi.org/10.3390/md18070371 PMID:32708476
  21. Hay, M. E., & Fenical, W. (1988). Marine plant-herbivore interactions: The ecology of chemical defense. Annual Review of Ecology and Systematics, 19, 111–145. https://doi.org/10.1146/annurev.es.19.110188.000551
  22. Hay, M. E. (1997). The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reefs, 16, S67– S76. https://doi.org/10.1007/s003380050243
  23. Hussein, J. H., Hadi, M. Y., & Hameed, I. H. (2016). Study of chemical composition of Foeniculum vulgare using Fourier transform infrared spectrophotometer and Gas chromatography - mass spectrometry. Journal of Pharmacognosy and Phytotherapy, 8, 60–89. https://doi.org/10.5897/JPP2015.0372
  24. Inbakandan, D., Raj, S., Kumar, C., Venkatesan, R., & Khan, S. A. (2016). Virtual screening of marine natural antifoulant: In silico approach to screen antifouling metabolites from marine sponges. Indian Journal of Geo-Marine Sciences, 45(8), 1042–1048.
  25. Kamino, K., Odo, S., & Maruyama, T. (1996). Cement proteins of the acorn barnacle, Megabalanus rosa. The Biological Bulletin, 190, 403–409. https://doi.org/10.2307/1543033 PMID:8679743
  26. Khadke, S. K., Lee, J. H., Kim, Y. G., Raj, V., & Lee, J. (2021). Assessment of antibiofilm potencies of nervonic and oleic acid against Acinetobacter baumannii using in vitro and computational approaches. Biomedicines, 9(9), 1133. https://doi.org/10.3390/biomedicines9091133 PMID:34572317
  27. Kyei, S. K., Darko, G., & Akaranta, O. (2020). Chemistry and application of emerging ecofriendly antifouling paints: A review. Journal of Coatings Technology and Research, 17(2), 315–332. https://doi.org/10.1007/s11998-019-00294-3
  28. Li, X., Li, F., Jian, H., & Su, R. (2018). Exploration of antifouling potential of the brown algae Laminaria ‘Sanhai’. Journal of Ocean University of China, 17(5), 1135–1141. https://doi.org/10.1007/s11802-018-3524-8
  29. Liang, C., Strickland, J., Ye, Z., Wu, W., Hu, B., & Rittschof, D. (2019). Biochemistry of barnacle adhesion: An updated review. Frontiers in Marine Science, 6, 565. https://doi.org/10.3389/fmars.2019.00565
  30. Liu, L. L., Wu, C. H., & Qian, P. Y. (2020, November). Marine natural products as antifouling molecules - a mini-review (2014-2020). Biofouling, 36(10), 1210–1226. https://doi.org/10.1080/08927014.2020.1864343 PMID:33401982
  31. Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. X., & Cao, Y. (2022). CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50, W159–W164. Advance online publication. https://doi.org/10.1093/nar/gkac394 PMID:35609983
  32. Maréchal, J. P., & Hellio, C. (2011). Antifouling activity against barnacle cypris larvae: Do target species matter (Amphibalanus amphitrite versus Semibalanus balanoides)? International Biodeterioration & Biodegradation, 65(1), 92–101. https://doi.org/10.1016/j.ibiod.2010.10.002
  33. Murugan, A., Begum, M. S., Ramasamy, M. S., & Raja, P. (2012). Antifouling and antipredatory activity of natural products of the seaweeds Dictyota dichotoma and Chaetomorpha linoides. Natural Product Research, 26(10), 975–978. https://doi.org/10.1080/14786419.2010.545355 PMID:21861643
  34. Nigam, S., Singh, R., Bhardwaj, S. K., Sami, R., Nikolova, M. P., Chavali, M., & Sinha, S. (2022). Perspective on the therapeutic applications of algal polysaccharides. Journal of Polymers and the Environment, 785–809. https://doi.org/10.1007/s10924-021-02231-1 PMID:34305487
  35. Omae, I. (2003). Organotin antifouling paints and their alternatives. Applied Organometallic Chemistry, 17, 81–105. https://doi.org/10.1002/aoc.396
  36. Pan, S. W., Li, Y. G., Su, H., Li, X., & Zhang, Y. B. (2019). Oleic acid impedes adhesion of Porphyromonas gingivalis during the early stages of biofilm formation. International Journal of Clinical and Experimental Medicine, 12, 9881–9889.
  37. Paradas, W. C., Tavares Salgado, L., Pereira, R. C., Hellio, C., Atella, G. C., de Lima Moreira, D., do Carmo, A. P. B., Soares, A. R., & Menezes Amado-Filho, G. (2016). A novel antifouling defense strategy from red seaweed: Exocytosis and deposition of fatty acid derivatives at the cell wall surface. Plant & Cell Physiology, 57, 1008–1019. https://doi.org/10.1093/pcp/pcw039 PMID:26936789
  38. Paul, V. J. (1992). Ecological roles of marine natural products. Comstock.
  39. Paul, V. J., Cruz-Rivera, E., & Thacker, R. W. (2001). Chemical mediation of macroalgal-herbivore interactions: ecological and evolutionary perspectives. In Marine chemical ecology (pp. 227–265). CRC Press.
  40. Paz-Villarraga, C. A., Castro, Í. B., & Fillmann, G. (2022). Biocides in antifouling paint formulations currently registered for use. Environmental Science and Pollution Research International, 29, 30090–30101. https://doi.org/10.1007/s11356-021-17662-5 PMID:34997484
  41. Pereira, R. C., & Vasconcelos, M. A. (2014). Chemical defense in the red seaweed Plocamium brasiliense: Spatial variability and differential action on herbivores. Brazilian Journal of Biology, 74, 545–552. https://doi.org/10.1590/bjb.2014.0080 PMID:25296201
  42. Plouguerné, E., De Souza, L. M., Sassaki, G. L., Hellio, C., Trepos, R., Da Gama, B. A., Pereira, R. C., & Barreto-Bergter, E. (2020). Glycoglycerolipids from Sargassum vulgare as potential antifouling agents. Frontiers in Marine Science, 7, 116. https://doi.org/10.3389/fmars.2020.00116
  43. Prasath, K. G., Tharani, H., Kumar, M. S., & Pandian, S. K. (2020). Palmitic acid inhibits the virulence factors of Candida tropicalis: Biofilms, cell surface hydrophobicity, ergosterol biosynthesis, and enzymatic activity. Frontiers in Microbiology, 11, 864. https://doi.org/10.3389/fmicb.2020.00864 PMID:32457728
  44. Qi, S. H., & Ma, X. (2017). Antifouling compounds from marine invertebrates. Marine Drugs, 15(9), 263. https://doi.org/10.3390/md15090263 PMID:28846623
  45. Qian, P.-Y., Chen, L., & Xu, Y. (2013). Mini-review: Molecular mechanisms of antifouling compounds. Biofouling, 29, 381–400. https://doi.org/10.1080/08927014.2013.776546 PMID:23574197
  46. Rima, M., Trognon, J., Latapie, L., Chbani, A., Roques, C., & El Garah, F. (2022). Seaweed extracts: A promising source of antibiofilm agents with distinct mechanisms of action against Pseudomonas aeruginosa. Marine Drugs, 20, 92. https://doi.org/10.3390/md20020092 PMID:35200622
  47. Saha, M., Goecke, F., & Bhadury, P. (2018). Minireview: Algal natural compounds and extracts as antifoulants. Journal of Applied Phycology, 30(3), 1859–1874. https://doi.org/10.1007/s10811-017-1322-0 PMID:29899600
  48. Salehi, B., Sharifi-Rad, J., Seca, A. M. L., Pinto, D. C. G. A., Michalak, I., Trincone, A., Mishra, A. P., Nigam, M., Zam, W., & Martins, N. (2019). Current trends on seaweeds: Looking at chemical composition, phytopharmacology, and cosmetic applications. Molecules (Basel, Switzerland), 24(22), 4182. https://doi.org/10.3390/molecules24224182 PMID:31752200
  49. Satheesh, S., & Ba-Akdah, M. A. (2022). Temporal variations in the antifouling activity of extract of the soft coral Sarcophyton trocheliophorum collected from the Red Sea. Ocean Science Journal, 57, 247–258. https://doi.org/10.1007/s12601-022-00062-2
  50. Satheesh, S., Ba-akdah, M. A., & Al-Sofyani, A. A. (2016). Natural antifouling compound production by microbes associated with marine macroorganisms—A review. Electronic Journal of Biotechnology, 21, 26–35. https://doi.org/10.1016/j.ejbt.2016.02.002
  51. Shameel, M., Shaikh, W., & Khan, R. (1991). Comparative fatty acid composition of five species of Dictyota (Phaeophyta). Botanica Marina, 34, 425–428. https://doi.org/10.1515/botm.1991.34.5.425
  52. Siddik, A., & Satheesh, S. (2019). Characterization and assessment of barnacle larval settlement-inducing activity of extracellular polymeric substances isolated from marine biofilm bacteria. Scientific Reports, 9(1), 17849. https://doi.org/10.1038/s41598-019-54294-9 PMID:31780773
  53. Siless, G. E., García, M., Pérez, M., Blustein, G., & Palermo, J. A. (2018). Large-scale purification of pachydictyol A from the brown alga Dictyota dichotoma obtained from algal wash and evaluation of its antifouling activity against the freshwater mollusk Limnoperna fortunei. Journal of Applied Phycology, 30(1), 629–636. https://doi.org/10.1007/s10811-017-1261-9
  54. So, C. R., Fears, K. P., Leary, D. H., Scancella, J. M., Wang, Z., Liu, J. L., Orihuela, B., Rittschof, D., Spillmann, C. M., & Wahl, K. J. (2016). Sequence basis of barnacle cement nanostructure is defined by proteins with silk homology. Scientific Reports, 6, 36219. https://doi.org/10.1038/srep36219 PMID:27824121
  55. Stabili, L., Acquaviva, M. I., Biandolino, F., Cavallo, R. A., De Pascali, S. A., Fanizzi, F. P., Narracci, M., Petrocelli, A., & Cecere, E. (2012). The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): A potential resource for biotechnological purposes? New Biotechnology, 29(3), 443–450. https://doi.org/10.1016/j.nbt.2011.11.003 PMID:22100430
  56. Takahashi, K. (2009). Release rate of biocides from antifouling paints. In T. Arai, H. Harino, M. Ohji, & W. J. Langston (Eds.), Ecotoxicology of Antifouling Biocides (pp. 3–22)., https://doi.org/10.1007/978-4-431-85709-9_1
  57. Tian, L., Yin, Y., Bing, W., & Jin, E. (2021). Antifouling technology trends in marine environmental protection. Journal of Bionic Engineering, 18(2), 239–263. https://doi.org/10.1007/s42235-021-0017-z PMID:33815489
  58. Viano, Y., Bonhomme, D., Camps, M., Briand, J. F., Ortalo-Magné, A., Blache, Y., Piovetti, L., & Culioli, G. (2009). Diterpenoids from the Mediterranean brown alga Dictyota sp. evaluated as antifouling substances against a marine bacterial biofilm. Journal of Natural Products, 72(7), 1299–1304. https://doi.org/10.1021/np900102f PMID:19548693
  59. Vinagre, P. A., Simas, T., Cruz, E., Pinori, E., & Svenson, J. (2020). Marine biofouling: A European database for the marine renewable energy sector. Journal of Marine Science and Engineering, 8(7), 495. https://doi.org/10.3390/jmse8070495
  60. Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707 PMID:30165565
  61. Yebra, D. M., Kiil, S., & Dam-Johansen, K. (2004). Antifouling technology—Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings, 50(2), 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001
  62. Zhang, J., Liang, Y., Wang, K. L., Liao, X. J., Deng, Z., & Xu, S. H. (2014). Antifouling steroids from the South China Sea gorgonian coral Subergorgia suberosa. Steroids, 79, 1–6. https://doi.org/10.1016/j.steroids.2013.10.007 PMID:24184487
DOI: https://doi.org/10.26881/oahs-2024.3.03 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 237 - 248
Submitted on: Dec 14, 2022
Accepted on: Feb 29, 2024
Published on: Oct 11, 2024
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Mohammad Abdulaziz Ba-akdah, Sathianeson Satheesh, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.