References
- Aguilar Ibarra, A., Gevrey, M., Park, Y S., Lim, P., & Lek, S. (2003). Modelling the factors that influence fish guilds composition using a back-propagation network: Assessment of metrics for indices of biotic integrity. Ecological Modelling, 160, 281-290. https://doi.org/10.1016/S0304-3800(02)00259-4
- Anderson, D., & McNeill, G. (1992). Artificial neural networks technology. Kaman Sciences Corporation, 258(6), 1-83.
- Amoros, C., Roux, A. L., Reygrobellet, J. L., Bravard, J. P., & Pautou, G. (1987). A method for applied ecological studies of fluvial hydrosystems. Regulated Rivers, 1, 17-36. https:// doi.org/10.1002/rrr.3450010104
- Aoki, I., & Komatsu, T. (1997). Analysis and prediction of the fluctuation of sardine abundance using a neural network. Oceanologica Acta, 20(1), 81-88.
- Attayde, J. L., & Bozelli, R. L. (1998). Assessing the indicator properties of zooplankton as-semblages to disturbance gradients by canonical correspondence analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1789-1797. https://doi.org/10.1139/f98-033
- Banse, K. (1995). Zooplankton: Pivotal role in the control of ocean production. ICES Journal of Marine Science, 52 (3-4), 265-277. https://doi.org/10.1016/1054-3139(95)80043-3
- Benzer, S., Benzer, R., & Gunal Caglan, A. (2017). Artificial Neural Networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanli Dam Lake. Biologia, 72, 527-535. https://doi.org/10.1515/biolog-2017-0052
- Benzer, S., & Benzer, R. (2018). New perspectives for predicting growth properties of crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan Journal of Zoology, 50(1), 35-45. https://doi.org/10.17582/journal. pjz/2018.50.1.35.45
- Bulut, H., & Saler, S. (2018). Seasonal Variations in Zooplankton Community of an Aquatic Ecosystem at Susurluk Basin (Balikesir-Turkey). Fres. Env. Bul., 27(7), 2530-2535.
- Bulut, H., & Saler, S. (2019). Effect of physicochemical parameters on zooplankton at a freshwater body of Euphrates Basin (Elazig-Turkey). Cellular and Molecular Biology, 65(1), 8-13. https://doi.org/10.14715/cmb/2019.65.1.2 PMID:30782288
- Bulut, H., & Saler, S. (2020). Monthly distribution of zooplankton in Kapikaya Reservoir, Turkey. Maejo International Journal of Science and Technology, 14 (1), 1-10.
- Burns, C. W., & Galbraith, L. M. (2007). Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of Plankton Research, 29(3), 127-139. https://doi.org/10.1093/ plankt/fbm001
- Deivanai, K., Arunprasath, S., Rajan, M. K., & Baskaran, S. (2004). Biodiversity of phyto and zooplankton in relation to water quality parameters in a sewage polluted pond at Ellayirampannai, Virudhunagar District. In: The proceedings of National Symposium on biodiversity resources management and sustainable use, organized by the center for biodiversity and Forest studies, Madurai Kamaraj University. Madurai.
- Dini, M. L., & Carpenter, S. R. (1992). Fish predators, food availability and diel vertical migration in Daphnia. Journal of Plankton Research, 14, 359-377. https://doi.org/10.1093/ plankt/14.3.359
- Haykin, S. (1994). Neural Networks, A Comprehensive Foundation. MacMillan College Publishing Comp.
- Hoang, H., Recknagel, F., Marshall, J., & Choy, S. (2001). Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia). Ecological Modelling, 195, 195-206. https://doi.org/10.1016/S0304-3800(01)00306-4
- Horne, A. J., & Goldman, C. R. (1994). Limnology. McGraw-Hill.
- Ismail, A. H., & Adnan, A. A. (2016). Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Tropical Life Sciences Research, 27(supp1), 31-38. https://doi.org/10.21315/tlsr2016.27.3.5 PMID:27965738
- Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting fnancial and economic time series. Neurocomputing, 10(3), 215-236. https://doi.org/10.1016/0925-2312(95)00039-9
- Karjalainen, J., Holopainen, A. L., & Huttunen, P. (1996). Spatial patterns and relationships between phytoplankton, zooplankton and water quality in the Saimaa Lake system. Hydrobiologia. https://doi.org/10.1007/978-94-009-1655-5_42
- Karul, C., Soyupak, S., Cilesiz, A. F., Akbay, N., & Germen, E. (2000). Case studies on the use of neural networks in eutrophication modeling. Ecological Modelling, 134, 145-152. https://doi.org/10.1016/S0304-3800(00)00360-4
- Krenker, A., Bester, J., & Kos, A. (2011). Artificial Neural Networks-Methodological Advances and Biomedical Applications. InTech, 5, 3-18.
- Legendre, L., & Demers, S. (1984). Towards dynamic biological oceanography and limnology. Canadian Journal of Fisheries and Aquatic Sciences, 41,2-19. https://doi.org/10.1139/f84-001
- Lewis, C. D. (1982). Industrial and business forecasting methods. Butterworths.
- Loverde Oliveira, S. M., Huszar, V. L. M., Mazzeo, N., & Scheffer, M. (2009). Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems (New York, N.Y.), 12, 807-819. https://doi.org/10.1007/s10021-009-9258-0
- Maravelias, C. D., & Reid, D. G. (1997). Identifying the effects of oceanographic features and zooplankton on prespawning herring abundance using generalized additive models. Marine Ecology Progress Series, 147, 1-9. https://doi.org/10.3354/meps147001
- Mastrorillo, S., Lek, S., Dauba, F., & Belaud, A. (1997). The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biology, 38, 237-246. https://doi.org/10.1046/j.1365-2427.1997.00209.x
- Moss, B., Beklioglu, M., Carvalho, L., Kilinc, S., McGowan, S., & Stephen, D. (1997). Vertically-challenged limnology; contrasts between deep and shallow lakes. Springer. https://doi.org/10.1007/978-94-011-5648-6_27
- Muylaert, K., Declerck, S., Van Wichelen, J., De Meester, L., & Vyverman, W. (2006). An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnologica, 36(2), 69-78. https://doi.org/10.1016/j.limno.2005.12.003
- Olden, J. D., & Jackson, D. A. (2002). Illuminating the “Black Box”: A Randomization Approach for Understanding Variable Contributions in Artifical Neural Networks. Ecological Modelling, 154, 135-150. https://doi.org/10.1016/S0304-3800(02)00064-9
- Ozcan, E. I., & Serdar, O. (2018). Artifical neural networks as new alternative method to estimating some population parameters of tigris loach (Oxynoemacheilus tigris (Heckel, 1843)) in the Karasu River, Turkey. Fres. Env. Bul., 27(12B), 9840-9850.
- Ozcan, E. I., & Serdar, O. (2019). Evaluation of a New Computer Method ANNs and Traditional Methods LWRs and VBGF in the Calculation of Some Growth Parameters of Two Cyprinid Species. Fres. Env. Bul., 28(10), 7644-7654.
- Ozcan, E. I. (2019). Artificial Neural Networks A New Statistical Approach Method in Length-Weight Relationships of Alburnus mossulensis in Murat River Palu-Elazig Turkey. Applied Ecology and Environmental Research, 17, 10253-10266. https://doi.org/10.15666/aeer/1705_1025310266
- Pinto-Coelho, R. (1998). Effects of eutrophication on seasonal patterns of mesozooplankton in a tropical reservoir: A 4-year study in Pampulha Lake, Brazil. Freshwater Biology, 40, 159-173. https://doi.org/10.1046/j.1365-2427.1998.00327.x
- Pinel-Alloul, B., Mathot, G., Verreault, G., & Vigneault, Y. (1990). Zooplankton species associations in Quebec Lakes: Variation with abiotic factors, including natural and anthropogenic acidification. Canadian Journal of Fisheries and Aquatic Sciences, 47, 110-121. https://doi.org/10.1139/ f90-011
- Reyjol, Y., Lim, P., Belaud, A., & Lek, S. (2001). Modelling of microhabitat used by fish in natural and regulated flows in the river Garonne (France). Ecological Modelling, 146, 131-142. https://doi.org/10.1016/S0304-3800(01)00301-5
- Ryding, S. O., & Rast, W. (1989). The Control of Eutrophicayion of Lakes and Reservoirs. Man and Biosphere Series, Parthenon Publication Group.
- Saler, S. (2017). Diversity and abundance of zooplankton in Medik Reservoir of Turkey. Maejo International Journal of Science and Technology, 11 (2), 126-132.
- Saler, S. (1995). Cip Baraj Golu (Elazig) Rotifera Faunasinin Taksonomik Yonden Incelenmesi [In Turkish]. Firat UniversitesiFen ve Muhendislik Bilimleri Dergisi, 12, 329-337.
- Schleiter, I. M., Borchardt, D., Wagner, R., Dapper, T., Schmidt, K. D., Schmidt, H. H., & Werne, R. H. (1999). Modelling water quality, bioindication and population dynamics in lotic ecosystems using neural network. Ecological Modelling, 120, 271-286. https://doi.org/10.1016/S0304-3800(99)00108-8
- Sharda, R., & Patil, R. B. (1992). Connectionist approach to time series prediction: An empirical test. Journal of Intelligent Manufacturing, 3, 317-323. https://doi.org/10.1007/ BF01577272
- Sousa, W., Attayde, J. L., Rocha, E. D. S., & Eskinazi-Sant Anna, E. M. (2008). The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern. Brazil. Journal of Plankton Research, 30(6), 699-708. https://doi.org/10.1093/plankt/ fbn032
- Sagiroglu, S., Besdok, E., & Erler, M. (2003). Muhendislikte yapay zeka uygulamalari I, Yapay Sinir Aglari, Ufuk Kitap Kirtasiye-Yayincilik Tic. Ltd.Sti. (In Turkish)
- Tanyolac, J. (2009). Limnoloji. Hatiboglu Basimevi. (In Turkish) URL. 2023 https://tr.wikipedia.org/wiki/Cip_Baraj%C4%B1 [Accessed 20 May 2023]