Have a personal or library account? Click to login
Estimation of zooplankton density with artificial neural networks (a new statistical approach) method, Elazığ-Türkiye Cover

Estimation of zooplankton density with artificial neural networks (a new statistical approach) method, Elazığ-Türkiye

By: Hilal Bulut  
Open Access
|Dec 2023

References

  1. Aguilar Ibarra, A., Gevrey, M., Park, Y S., Lim, P., & Lek, S. (2003). Modelling the factors that influence fish guilds composition using a back-propagation network: Assessment of metrics for indices of biotic integrity. Ecological Modelling, 160, 281-290. https://doi.org/10.1016/S0304-3800(02)00259-4
  2. Anderson, D., & McNeill, G. (1992). Artificial neural networks technology. Kaman Sciences Corporation, 258(6), 1-83.
  3. Amoros, C., Roux, A. L., Reygrobellet, J. L., Bravard, J. P., & Pautou, G. (1987). A method for applied ecological studies of fluvial hydrosystems. Regulated Rivers, 1, 17-36. https:// doi.org/10.1002/rrr.3450010104
  4. Aoki, I., & Komatsu, T. (1997). Analysis and prediction of the fluctuation of sardine abundance using a neural network. Oceanologica Acta, 20(1), 81-88.
  5. Attayde, J. L., & Bozelli, R. L. (1998). Assessing the indicator properties of zooplankton as-semblages to disturbance gradients by canonical correspondence analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1789-1797. https://doi.org/10.1139/f98-033
  6. Banse, K. (1995). Zooplankton: Pivotal role in the control of ocean production. ICES Journal of Marine Science, 52 (3-4), 265-277. https://doi.org/10.1016/1054-3139(95)80043-3
  7. Benzer, S., Benzer, R., & Gunal Caglan, A. (2017). Artificial Neural Networks approach in morphometric analysis of crayfish (Astacus leptodactylus) in Hirfanli Dam Lake. Biologia, 72, 527-535. https://doi.org/10.1515/biolog-2017-0052
  8. Benzer, S., & Benzer, R. (2018). New perspectives for predicting growth properties of crayfish (Astacus leptodactylus Eschscholtz, 1823) in Uluabat Lake. Pakistan Journal of Zoology, 50(1), 35-45. https://doi.org/10.17582/journal. pjz/2018.50.1.35.45
  9. Bulut, H., & Saler, S. (2018). Seasonal Variations in Zooplankton Community of an Aquatic Ecosystem at Susurluk Basin (Balikesir-Turkey). Fres. Env. Bul., 27(7), 2530-2535.
  10. Bulut, H., & Saler, S. (2019). Effect of physicochemical parameters on zooplankton at a freshwater body of Euphrates Basin (Elazig-Turkey). Cellular and Molecular Biology, 65(1), 8-13. https://doi.org/10.14715/cmb/2019.65.1.2 PMID:30782288
  11. Bulut, H., & Saler, S. (2020). Monthly distribution of zooplankton in Kapikaya Reservoir, Turkey. Maejo International Journal of Science and Technology, 14 (1), 1-10.
  12. Burns, C. W., & Galbraith, L. M. (2007). Relating planktonic microbial food web structure in lentic freshwater ecosystems to water quality and land use. Journal of Plankton Research, 29(3), 127-139. https://doi.org/10.1093/ plankt/fbm001
  13. Deivanai, K., Arunprasath, S., Rajan, M. K., & Baskaran, S. (2004). Biodiversity of phyto and zooplankton in relation to water quality parameters in a sewage polluted pond at Ellayirampannai, Virudhunagar District. In: The proceedings of National Symposium on biodiversity resources management and sustainable use, organized by the center for biodiversity and Forest studies, Madurai Kamaraj University. Madurai.
  14. Dini, M. L., & Carpenter, S. R. (1992). Fish predators, food availability and diel vertical migration in Daphnia. Journal of Plankton Research, 14, 359-377. https://doi.org/10.1093/ plankt/14.3.359
  15. Haykin, S. (1994). Neural Networks, A Comprehensive Foundation. MacMillan College Publishing Comp.
  16. Hoang, H., Recknagel, F., Marshall, J., & Choy, S. (2001). Predictive modelling of macroinvertebrate assemblages for stream habitat assessments in Queensland (Australia). Ecological Modelling, 195, 195-206. https://doi.org/10.1016/S0304-3800(01)00306-4
  17. Horne, A. J., & Goldman, C. R. (1994). Limnology. McGraw-Hill.
  18. Ismail, A. H., & Adnan, A. A. (2016). Zooplankton composition and abundance as indicators of eutrophication in two small man-made lakes. Tropical Life Sciences Research, 27(supp1), 31-38. https://doi.org/10.21315/tlsr2016.27.3.5 PMID:27965738
  19. Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting fnancial and economic time series. Neurocomputing, 10(3), 215-236. https://doi.org/10.1016/0925-2312(95)00039-9
  20. Karjalainen, J., Holopainen, A. L., & Huttunen, P. (1996). Spatial patterns and relationships between phytoplankton, zooplankton and water quality in the Saimaa Lake system. Hydrobiologia. https://doi.org/10.1007/978-94-009-1655-5_42
  21. Karul, C., Soyupak, S., Cilesiz, A. F., Akbay, N., & Germen, E. (2000). Case studies on the use of neural networks in eutrophication modeling. Ecological Modelling, 134, 145-152. https://doi.org/10.1016/S0304-3800(00)00360-4
  22. Krenker, A., Bester, J., & Kos, A. (2011). Artificial Neural Networks-Methodological Advances and Biomedical Applications. InTech, 5, 3-18.
  23. Legendre, L., & Demers, S. (1984). Towards dynamic biological oceanography and limnology. Canadian Journal of Fisheries and Aquatic Sciences, 41,2-19. https://doi.org/10.1139/f84-001
  24. Lewis, C. D. (1982). Industrial and business forecasting methods. Butterworths.
  25. Loverde Oliveira, S. M., Huszar, V. L. M., Mazzeo, N., & Scheffer, M. (2009). Hydrology-driven regime shifts in a shallow tropical lake. Ecosystems (New York, N.Y.), 12, 807-819. https://doi.org/10.1007/s10021-009-9258-0
  26. Maravelias, C. D., & Reid, D. G. (1997). Identifying the effects of oceanographic features and zooplankton on prespawning herring abundance using generalized additive models. Marine Ecology Progress Series, 147, 1-9. https://doi.org/10.3354/meps147001
  27. Mastrorillo, S., Lek, S., Dauba, F., & Belaud, A. (1997). The use of artificial neural networks to predict the presence of small-bodied fish in river. Freshwater Biology, 38, 237-246. https://doi.org/10.1046/j.1365-2427.1997.00209.x
  28. Moss, B., Beklioglu, M., Carvalho, L., Kilinc, S., McGowan, S., & Stephen, D. (1997). Vertically-challenged limnology; contrasts between deep and shallow lakes. Springer. https://doi.org/10.1007/978-94-011-5648-6_27
  29. Muylaert, K., Declerck, S., Van Wichelen, J., De Meester, L., & Vyverman, W. (2006). An evaluation of the role of daphnids in controlling phytoplankton biomass in clear water versus turbid shallow lakes. Limnologica, 36(2), 69-78. https://doi.org/10.1016/j.limno.2005.12.003
  30. Olden, J. D., & Jackson, D. A. (2002). Illuminating the “Black Box”: A Randomization Approach for Understanding Variable Contributions in Artifical Neural Networks. Ecological Modelling, 154, 135-150. https://doi.org/10.1016/S0304-3800(02)00064-9
  31. Ozcan, E. I., & Serdar, O. (2018). Artifical neural networks as new alternative method to estimating some population parameters of tigris loach (Oxynoemacheilus tigris (Heckel, 1843)) in the Karasu River, Turkey. Fres. Env. Bul., 27(12B), 9840-9850.
  32. Ozcan, E. I., & Serdar, O. (2019). Evaluation of a New Computer Method ANNs and Traditional Methods LWRs and VBGF in the Calculation of Some Growth Parameters of Two Cyprinid Species. Fres. Env. Bul., 28(10), 7644-7654.
  33. Ozcan, E. I. (2019). Artificial Neural Networks A New Statistical Approach Method in Length-Weight Relationships of Alburnus mossulensis in Murat River Palu-Elazig Turkey. Applied Ecology and Environmental Research, 17, 10253-10266. https://doi.org/10.15666/aeer/1705_1025310266
  34. Pinto-Coelho, R. (1998). Effects of eutrophication on seasonal patterns of mesozooplankton in a tropical reservoir: A 4-year study in Pampulha Lake, Brazil. Freshwater Biology, 40, 159-173. https://doi.org/10.1046/j.1365-2427.1998.00327.x
  35. Pinel-Alloul, B., Mathot, G., Verreault, G., & Vigneault, Y. (1990). Zooplankton species associations in Quebec Lakes: Variation with abiotic factors, including natural and anthropogenic acidification. Canadian Journal of Fisheries and Aquatic Sciences, 47, 110-121. https://doi.org/10.1139/ f90-011
  36. Reyjol, Y., Lim, P., Belaud, A., & Lek, S. (2001). Modelling of microhabitat used by fish in natural and regulated flows in the river Garonne (France). Ecological Modelling, 146, 131-142. https://doi.org/10.1016/S0304-3800(01)00301-5
  37. Ryding, S. O., & Rast, W. (1989). The Control of Eutrophicayion of Lakes and Reservoirs. Man and Biosphere Series, Parthenon Publication Group.
  38. Saler, S. (2017). Diversity and abundance of zooplankton in Medik Reservoir of Turkey. Maejo International Journal of Science and Technology, 11 (2), 126-132.
  39. Saler, S. (1995). Cip Baraj Golu (Elazig) Rotifera Faunasinin Taksonomik Yonden Incelenmesi [In Turkish]. Firat UniversitesiFen ve Muhendislik Bilimleri Dergisi, 12, 329-337.
  40. Schleiter, I. M., Borchardt, D., Wagner, R., Dapper, T., Schmidt, K. D., Schmidt, H. H., & Werne, R. H. (1999). Modelling water quality, bioindication and population dynamics in lotic ecosystems using neural network. Ecological Modelling, 120, 271-286. https://doi.org/10.1016/S0304-3800(99)00108-8
  41. Sharda, R., & Patil, R. B. (1992). Connectionist approach to time series prediction: An empirical test. Journal of Intelligent Manufacturing, 3, 317-323. https://doi.org/10.1007/ BF01577272
  42. Sousa, W., Attayde, J. L., Rocha, E. D. S., & Eskinazi-Sant Anna, E. M. (2008). The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern. Brazil. Journal of Plankton Research, 30(6), 699-708. https://doi.org/10.1093/plankt/ fbn032
  43. Sagiroglu, S., Besdok, E., & Erler, M. (2003). Muhendislikte yapay zeka uygulamalari I, Yapay Sinir Aglari, Ufuk Kitap Kirtasiye-Yayincilik Tic. Ltd.Sti. (In Turkish)
  44. Tanyolac, J. (2009). Limnoloji. Hatiboglu Basimevi. (In Turkish) URL. 2023 https://tr.wikipedia.org/wiki/Cip_Baraj%C4%B1 [Accessed 20 May 2023]
DOI: https://doi.org/10.26881/oahs-2023.4.11 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 502 - 515
Submitted on: Oct 8, 2023
Accepted on: Nov 27, 2023
Published on: Dec 31, 2023
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Hilal Bulut, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.