Have a personal or library account? Click to login
Antioxidant radical scavenging capacity and total carotenoid content of narrow-clawed crayfish (Pontastacus leptodactylus, Eschscholtz, 1823) in Atikhisar Reservoir (Çanakkale, Türkiye) Cover

Antioxidant radical scavenging capacity and total carotenoid content of narrow-clawed crayfish (Pontastacus leptodactylus, Eschscholtz, 1823) in Atikhisar Reservoir (Çanakkale, Türkiye)

Open Access
|Dec 2023

References

  1. Antolovich, M., Prenzler, P. D., Patsalides, E., McDonald, S., & Robards, K. (2002). Methods for testing antioxidant activity. Analyst, 127(1), 183-198. https://doi.org/10.1039/ b009171p PMID:11827390
  2. Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., & Heras, A. (2009). Functional characterization of chitin and chitosan. Current Chemical Biology, 3(2), 203-230. https://doi.org/10.2174/2212796810903020203
  3. Babin, A., Moreau, J., & Moret, Y (2019). Storage of carotenoids in crustaceans as an adaptation to modulate immunopathology and optimize immunological and lifehistory strategies. BioEssays, 41 (11), e1800254. https://doi.org/10.1002/bies.201800254 PMID:31566782
  4. Bai, C., Zhu, J., Xiong, G., Wang, W., Wang, J., Qiu, L., Zhang, Q., & Liao, T. (2023). Fortification of puffed biscuits with chitin and crayfish shell: Effect on physicochemical property and starch digestion. Frontiers in Nutrition, 10, 1107488. https:// doi.org/10.3389/fnut.2023.1107488 PMID:36998908
  5. Barim, O., & Karatepe, M. (2010). The effects of pollution on the vitamins A, E, C, beta-carotene contents and oxidative stress of the freshwater crayfish, Astacus leptodactylus. Ecotoxicology and Environmental Safety, 73(2), 138-142. https://doi.org/10.1016/j.ecoenv.2009.08.002 PMID:19853916
  6. Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A., & Mameri, N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29(1), 48-56. https://doi.org/10.1016/j.foodhyd.2012.02.013
  7. Berber, S. (2020). Türkiye’de Kerevit Stoklarinin Korunmasi ve Geliştirilmesi Onunde Engeller ve Qozum Yollari. In A. Bolat (Ed.), Ziraat, Orman ve Su Urunleri Alaninda Akademik Qalimalar-II ( 139-156). Gece Publishing.
  8. Berber, S., & Kale, S. (2018). Comparison of juvenile Astacus leptodactylus growth raised in cages in rice fields to other crayfish juvenile growth studies. Turkish Journal of Fisheries and Aquatic Sciences, 18(2), 331-341. https://doi.org/10.4194/1303-2712-v18_2_12
  9. Berber, S., Akhan, S., Bektas, Y., & Kalayci, G. (2020). Meat yield and length-weight relationship of freshwater crayfish (Pontastacus leptodactylus (Eschscholtz, 1823)) population in nine different inland water resources in Turkey. Acta Natura et Scientia, 1(1), 82-95. https://doi.org/10.29329/actanatsci.2020.313.10
  10. Berber, S., Kale, S., Bulut, M., & lzci, B. (2019). A study on determining the ideal stock density of freshwater crayfish (Pontastacus leptodactylus) in polyculture with rice (Oryza sativa L.). KSU Journal of Agriculture and Nature, 22(6), 953-964. https://doi.org/10.18016/ksutarimdoga.vi.544561
  11. Berber, S., Mazlum, Y., Demirci, A., & Türel, S. (2012). Structure, growth, mortality and size at sexual maturity of various populations Astacus leptodactylus Eschscholtz, 1823 (Cructacea: Decopada) in Turkey. Marine Science and Technology Bulletin, 1 (1), 21-27.
  12. Berber, S., Türel, S., & Yilmaz, S. (2014). The chemical composition of the crayfish (Astacus leptodactylus) in pond Yenice. Proceedings of the Fifth International Symposium on Sustainable Development, Sarajevo, Bosnia and Herzegovina, 75-86.
  13. Berthon, J. Y., Nachat-Kappes, R., Bey, M., Cadoret, J. P., Renimel, I., & Filaire, E. (2017). Marine algae as attractive source to skin care. Free Radical Research, 51 (6), 555-567. https://doi.org/10.1080/10715762.2017.1355550 PMID:28770671
  14. Biehler, E., Mayer, F., Hoffmann, L., Krause, E., & Bohn, T. (2010). Comparison of 3 spectrophotometric methods for carotenoid determination in frequently consumed fruits and vegetables. Journal of Food Science, 75 (1), C55-C61. https://doi.org/10.1111/j.1750-3841.2009.01417.x PMID:20492150
  15. Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft + Technologie, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  16. Caramujo, M. J., De Carvalho, C. C. C. R., Silva, S. J., & Carman, K. R. (2012). Dietary carotenoids regulate astaxanthin content of copepods and modulate their susceptibility to UV light and copper toxicity. Marine Drugs, 10(5), 998-1018. https:// doi.org/10.3390/md10050998 PMID:22822352
  17. Castillo, R., Nègre-Sadargues, G., & Lenel, R. (1982). General survey of the carotenoids in Crustacea. In G. Britton & T. W. Goodwin (Eds.), Carotenoid Chemistry and Biochemistry ( 211-224). Pergamon. https://doi.org/10.1016/B978-0-08-026224-6.50018-8
  18. Chen, J., Xia, X., Li, P., Yu, H., Xie, Y., Guo, Y., Yao, W., Qian, H., & Cheng, Y. (2023). Crayfish shells-derived carbon dots as a fluorescence sensor for the selective detection of 4-nitrophenol. Food and Agricultural Immunology, 34(1), 36-47. https://doi.org/10.1080/09540105.2022.2139358
  19. Cilbiz, N. (2010). Egirdir Gôlü (Isparta-Türkiye) tatli su istakozlarinin (Astacus leptodactylus, Esch. 1823) karotenoid miktari, et verimi ve kimyasal kompozisyonlarinin belirlenmesi (Determination of carotenoid amount, meat yield and chemical composition on freshwater crayfish (Astacus leptodactylus, Esch. 1823) in Egirdir Lake (Isparta-Turkey)). [Ph.D. Thesis, Süleyman Demirel University, Türkiye].
  20. Correia, A. D., Costa, M. H., Luis, O. J., & Livingstone, D. R. (2003). Age-related changes in antioxidant enzyme activities, fatty acid composition and lipid peroxidation in whole body Gammarus locusta (Crustacea: Amphipoda). Journal of Experimental Marine Biology and Ecology, 289(1), 83-101. https://doi.org/10.1016/S0022-0981(03)00040-6
  21. Crandall, K. A., & De Grave, S. (2017). An updated classification of the freshwater crayfishes (Decapoda: Astacidea) of the world, with a complete species list. Journal of Crustacean Biology, 37(5), 615-653. https://doi.org/10.1093/jcbiol/ rux070
  22. Czeczuga, B., Czeczuga-Semeniuk, E. (1999). Comparative studies of carotenoids in four species of crayfish. Crustaceana, 72(7), 693-700. https://doi.org/10.1163/156854099503735
  23. D’Abramo, L. R., Baum, N. A., Bordner, C. E., & Conklin, D. E. (1983). Carotenoids as a source of pigmentation in juvenile lobsters fed a purified diet. Canadian Journal of Fisheries and Aquatic Sciences, 40(6), 699-704. https://doi.org/10.1139/f83-092
  24. de Carvalho, C. C., & Caramujo, M. J. (2017). Carotenoids in aquatic ecosystems and aquaculture: A colorful business with implications for human health. Frontiers in Marine Science, 4, 93. https://doi.org/10.3389/fmars.2017.00093
  25. Fanjul-Moles, M. L., & Gonsebatt, M. E. (2011). Oxidative stress and antioxidant systems in crustacean life cycles. In D. Abele, J. P. Vázquez-Medina, & T. Zenteno-Savín (Eds.), Oxidative Stress in Aquatic Ecosystems ( 208-223). Blackwell Publishing Ltd. https://doi.org/10.1002/9781444345988.ch15
  26. Farivar, A., Atay, A., Sahan, Z., Serbester, U., Yenilmez, F., Tekeli, A., Küçükgülmez, A., Kadak, A. E., Celik, M., Uzun, Y., Kutlu, H. R., & Baykal Çelik, L. (2022). Effects of different degrees of deacetylation and levels of chitosan on performance, egg traits and serum biochemistry of laying hens. Archives of Animal Nutrition, 76(2), 112-124. https://doi.org/10.108 0/1745039X.2022.2082908 PMID:35726799
  27. Fawwaz, M., Pratama, M., Hasrawati, A., Sukmawati, Widiastuti, H., & Rahmavati, & Abidin Hasrawati, Z A. (2021). Total carotenoids, antioxidant and anticancer effect of Penaeus monodon shells extract. Biointerface Research in Applied Chemistry, 11 (4), 11293-11302. https://doi.org/10.33263/ BRIAC114.1129311302
  28. Felse, P. A., & Panda, T. (1999). Studies on applications of chitin and its derivatives. Bioprocess Engineering, 20, 505-512. https://doi.org/10.1007/s004490050622
  29. Geldiay, R., & Kocataş, A. (1970). Türkiye Astacus (Decapoda) popülasyonlarinin dagiliçi ve taksonomik tespiti (Taxonomical determination and distribution of Turkish Astacus (Decapoda) populations). Ege Üniversitesi Fen Fakültesi ilmi Raporlar Serisi, Ege Üniversitesi Matbaasi. Yayin No: 94, 3-7.
  30. Hansson, L. A. (2004). Plasticity in pigmentation induced by conflicting threats from predation and UV radiation. Ecology, 85(4), 1005-1016. https://doi.org/10.1890/02-0525
  31. Harish Prashanth, K. V., & Tharanathan, R. N. (2007). Chitin/ chitosan: Modifications and their unlimited application potential—An overview. Trends in Food Science & Technology, 18 (3), 117-131. https://doi.org/10.1016/j. tifs.2006.10.022
  32. Harlioglu, A. G., Yilmaz, O., Erdogdu, A., & Siltar, Y. B. (2021). Protein and amino acid composition of wild caught freshwater crayfish ( Pontastacus leptodactylus ) in the reproductive season. Nauplius-The Journal of The Brazilian Crustacean Society, 29, e2021044. https://doi.org/10.1590/2358-2936e2021044
  33. Harrison, K. E. (1990). The role of nutrition in maturation, reproduction and embryonic development of decapod crustaceans: A review. Journal of Shellfish Research, 9, 1-28.
  34. He, L., & Du, H. (2023). Detection of tartrazine with fluorescence sensor from crayfish shell carbon quantum dots. Journal of Food Composition and Analysis, 118, 105200. https://doi.org/10.1016/j.jfca.2023.105200
  35. Holthius, L. B. (1961). Report on a collection of Crustacea Decapoda and Stomatopoda from Turkey and Balkans. Zoôlogische Verhandelingen, 47(1), 1-67.
  36. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841-1856. https://doi.org/10.1021/ jf030723c PMID:15769103
  37. Ismail, A., Marjan, Z. M., & Foong, C. W. (2004). Total antioxidant activity and phenolic content in selected vegetables. Food Chemistry, 87(4), 581-586. https://doi.org/10.1016/j. foodchem.2004.01.010
  38. Kadak, A. E., Küçükgülmez, A., & Çelik, M. (2023). Preparation and characterization of crayfish (Astacus leptodactylus) chitosan with different deacetylation degrees. Iranian Journal of Biotechnology, 21(2), e3253. https://doi.org/10.30498/ijb.2023.323958.3253 PMID:37228624
  39. Kale, S. (2019). Monitoring of Climate Change Effects on Surface Area and Shoreline Changes in Atikhisar Reservoir by Using Remote Sensing and Geographic Information System in Terms of Fisheries Management. PhD. Thesis. Çanakkale Onsekiz Mart University.
  40. Kale, S., & Acarli, D. (2019a). Shoreline change monitoring in Atikhisar Reservoir by using remote sensing and geographic information system (GIS). Fresenius Environmental Bulletin, 28(5), 4329-4339.
  41. Kale, S., & Acarli, D. (2019b). Spatial and temporal change monitoring in water surface area of Atikhisar Reservoir (Canakkale, Turkey) by using remote sensing and geographic information system techniques. Alinteri Journal of Agriculture Sciences, 34(1), 47-56. https://doi.org/10.28955/alinterizbd.574361
  42. Kale, S., & Berber, S. (2020). Trend analysis and comparison of forecast models for production of Turkish crayfish (Pontastacus leptodactylus Eschscholtz, 1823) in Turkey. Yüzüncü Yil Üniversitesi Tarim Bilimleri Dergisi, 30(Additional issue), 973-988. https://doi.org/10.29133/yyutbd.761275
  43. Kale, S., Berber, S., Acarli, D., Demirkiran, T., Vural, P., Acarli, S., Kizilkaya, B., & Tan, E. (2020). First report of albinism in Turkish crayfish Pontastacus leptodactylus (Eschscholtz, 1823) (Crustacea, Decapoda, Astacidae). Acta Natura et Scientia, 1(1), 36-42. https://doi.org/10.29329/ actanatsci.2020.313.5
  44. Kale, S., Berber, S., Acarli, D., Demirkiran, T., Vural, P., Acarli, S., & Kizilkaya, B. (2021). Blue color anomaly in Turkish crayfish Pontastacus leptodactylus (Eschscholtz, 1823) (Crustacea, Decapoda, Astacidae) from Atikhisar Reservoir in Çanakkale, Turkey. Acta Natura et Scientia, 2(1), 1-5. https://doi.org/10.29329/actanatsci.2021.314.1
  45. Kantha, S. S. (1989). Carotenoids of edible molluscs; A review. Journal of Food Biochemistry, 13(6), 429-442. https://doi.org/10.1111/j.1745-4514.1989.tb00410.x
  46. Kaya, M., Baran, T., & Karaarslan, M. (2015). A new method for fast chitin extraction from shells of crab, crayfish and shrimp. Natural Product Research, 29(15), 1477-1480. https://doi.org/10.1080/14786419.2015.1026341 PMID:25835041
  47. Kirtikar, K. R., & Basu, B. D. (2006). Indian medicinal plants. 3. International Book Distributors. Dehradun.
  48. Kizilkaya, B., Acarli, S., Vural Ertugrul, P., Berber, S., & Çelik, P. (2021). Variation in radical antioxidant capacity and the total amount of carotenoids in razor clams, Ensis marginatus (Pennant, 1777), from the Çanakkale Strait (Abidealti), Turkey. Oceanological and Hydrobiological Studies, 50(1), 16-23. https://doi.org/10.2478/oandhs-2021-0002
  49. Kouba, A., Buric, M., & Kozák, P. (2010). Bioaccumulation and effects of heavy metals in crayfish: A review. Water, Air, and Soil Pollution, 211, 5-16. https://doi.org/10.1007/s11270-009-0273-8
  50. Kucukgulmez, A., Yanar, Y., Kadak, A. E., Gercek, G., Gelibolu, S., & Celik, M. (2016). Utilization of shellfish waste: Effects of chitosan from shrimp shell waste on fatty acid profiles of European eel. Fresenius Environmental Bulletin, 25(12), 5287-5290.
  51. Kumlu, M. (2001). Karides, istakoz ve Midye Yetiçtiricligi. Çukurova Üniversitesi Su Ürünleri Fakültesi Yayinlari No:6.
  52. Laribi-Habchi, H., Bouanane-Darenfed, A., Drouiche, N., Pauss, A., & Mameri, N. (2015). Purification, characterization, and molecular cloning of an extracellular chitinase from Bacillus licheniformis stain LHH100 isolated from wastewater samples in Algeria. International Journal of Biological Macromolecules, 72, 1117-1128. https://doi.org/10.1016/j.ijbiomac.2014.10.035 PMID:25450539
  53. Li, Z., Li, M.-C., Liu, C., Liu, X., Lu, Y., Zhou, G., Liu, C., & Mei, C. (2023). Microwave-assisted deep eutectic solvent extraction of chitin from crayfish shell wastes for 3D printable inks. Industrial Crops and Products, 194, 116325. https://doi.org/10.1016/j.indcrop.2023.116325
  54. Lichtenthaler, H. K., & Buschmann, C. (2001). Current protocols in food analytical Chemistry. John Wiley and Sons, Inc., New York F4.3.1-F.4.3.8.
  55. Lu, W., Feng, J., Otero, M., Liao, T., & Qiu, L. (2023). Removal of Sr(II) in aqueous solutions using magnetic crayfish shell biochar. Separations, 10(5), 310. https://doi.org/10.3390/ separations10050310
  56. Manuguerra, S., Caccamo, L., Mancuso, M., Arena, R., Rappazzo, A. C., Genovese, L., Santulli, A., Messina, C. M., & Maricchiolo, G. (2020). The antioxidant power of horseradish, Armoracia rusticana, underlies antimicrobial and antiradical effects, exerted in vitro. Natural Product Research, 34(11), 1567-1570. https://doi.org/10.1080/147 86419.2018.1517121 PMID:30461310
  57. Maoka, T. (2009). Recent progress in structural studies of carotenoids in animals and plants. Archives of Biochemistry and Biophysics, 483(2), 191-195. https://doi.org/10.1016/j. abb.2008.10.019 PMID:18983811
  58. Maoka, T. (2011). Carotenoids in marine animals. Marine Drugs, 9(2), 278-293. https://doi.org/10.3390/md9020278 PMID:21566799
  59. Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1-16. https://doi.org/10.1007/s11418-019-01364-x PMID:31588965
  60. Matsuno, T. (2001). Aquatic animal carotenoids. Fisheries Science, 67(5), 771-783. https://doi.org/10.1046/j.1444-2906.2001.00323.x
  61. Mazlum, Y., & Yilmaz, E. (2012). Kerevitlerin biyolojisi ve yetiştiriciligi (Biology and culture of crayfish). Mustafa Kemal Üniversitesi Yayinlari Yayin 34.
  62. Mazlum, Y., Can, M. F., & Oksüz, A. (2019). Diversification of narrow-clawed crayfish (Pontastacus leptodactylus Eschscholtz, 1823) populations from different parts of Turkey. Marine and Life Sciences, 1 (1), 1-9.
  63. McLay, C. L., & van den Brink, A. M. (2016). Crayfish growth and reproduction. In M. Longshaw & P. Stebbing (Eds.), Biology and Ecology of Crayfish ( 62-116). CRC Press.
  64. Mezzomo, N., & Ferreira, S. R. S. (2016). Carotenoids functionality, sources, and processing by supercritical technology: A review. Journal of Chemistry, 2016, 3164312. https://doi.org/10.1155/2016/3164312
  65. Miki, W. (1991). Biological functions and activities of animal carotenoids. Pure and Applied Chemistry, 63(1), 141-146. https://doi.org/10.1351/pac199163010141
  66. Mirtajaddini, S. A., Fathi Najafi, M., Vaziri Yazdi, S. A., & Kazemi Oskuee, R. (2021). Preparation of chitosan nanoparticles as a capable carrier for antigen delivery and antibody production. Iranian Journal of Biotechnology 19(4), e2871. https://doi.org/10.1016/j.ijbiomac.2014.10.035 PMID:35350645
  67. Moore, L. E., Smith, D. M., & Loneragan, N. R. (2000). Blood refractive index and whole-body lipid content as indicators of nutritional condition for penaeid prawns (Decapoda: Penaeidae). Journal of Experimental Marine Biology and Ecology 244(1), 131-143. https://doi.org/10.1016/S0022-0981(99)00127-6
  68. Muzzarelli, R. A. A. (2011). Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Marine Drugs, 9(9), 1510-1533. https://doi.org/10.3390/md9091510 PMID:22131955
  69. Nguyen, P. (2021). Recovered chitin, chitosan from shrimp shell: Structure, characteristics and applications. Thesis. Centria University of Applied Sciences.
  70. Nichols, J. A., & Katiyar, S. K. (2010). Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Archives of Dermatological Research, 302(2), 71-83. https://doi.org/10.1007/s00403-009-1001-3 PMID:19898857
  71. Nishino, H. (1998). Cancer prevention by carotenoids. Mutation Research, 402(1-2), 159-163. https://doi.org/10.1016/ S0027-5107(97)00293-5 PMID:9675267
  72. Oliveira, G. T., Fernandes, F. A., Bueno, A. A. P., & Bond-Buckup, G. (2007). Seasonal variations in the intermediate metabolism of Aegla platensis (Crustacea, Aeglidae). Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology 147(3), 600-606. https://doi.org/10.1016/j.cbpa.2006.08.025 PMID:17020810
  73. Oliveira, R. A., de Carvalho, M. L., Nutti, R. M., & de Carvalho, L. J. (2010). Assessment and degradation study of total carotenoid and-carotene in bitter yellow cassava (Manihot esculenta Crantz) varieties. African Journal of Food Science, 4(4), 148-155.
  74. Pachaiyappan, A., Muthuvel, A., Sadhasivam, G., Sankar, V. J. V., Sridhar, N., & Kumar, M. (2014). In vitro antioxidant activity of different gastropods, bivalves and echinoderm by solvent extraction method. International Journal of Pharmaceutical Sciences and Research, 5(6), 2539-2545. https://doi.org/10.13040/IJPSR.0975-8232.5(6).2529-35
  75. Reddy, D. R. S., Audipudi, A. V., Reddy, G. D., & Bhaskar, C. V. S. (2011). Antioxidant, antiinflammatory and antifungal activity of marine sponge Subergargoria suberosa-derived natural products. International Journal of Pharm Tech Research, 3(1), 342-348.
  76. Refaat Mohamed Morsi, R., Abed El-Hamied Al-Bassel, D., El-dash, H., Mahmoud, M., & Zaghloul, K. (2023). Usage of crayfish chitosan composite modified film, prepared from exoskeleton of Procambarus clarkii, in treatment of water copper toxicity. Fayoum Journal of Agricultural Research and Development, 37(1), 31-45. https://doi.org/10.21608/ fjard.2023.281011
  77. Reynolds, J. D., Celada, J. D., Carral, J. M., & Matthews, M. A. (1992). Reproduction of astacid crayfish in captivity— Current developments and implications for culture, with special reference to Ireland and Spain. Invertebrate Reproduction & Development, 22(1-3), 253-265. https://doi.org/10.1080/07924259.1992.9672278
  78. Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001
  79. Sagi, A., Rise, M., Isam, K., & Arad, S. M. (1995). Carotenoids and their derivatives in organs of the maturing female crayfish Cherax quadricarinatus. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 112(2), 309-313. https://doi.org/10.1016/0305-0491(95)00069-0 PMID:7719640
  80. Sasikumar, J. M., Jinu, U., & Shamna, R. (2009). Antioxidant activity and HPTLC analysis of root of Pandanus odoratissimus L. European Journal of Biological Sciences, 1 (2), 17-22.
  81. Schilderman, P. A. E. L., Moonen, E. J. C., Maas, L. M., Welle, I., & Kleinjans, J. C. S. (1999). Use of crayfish in biomonitoring studies of environmental pollution of the river Meuse. Ecotoxicology and Environmental Safety, 44(3), 241-252. https://doi.org/10.1006/eesa.1999.1827 PMID:10581118
  82. Schuster, G. A. (2020). Review of crayfish color patterns in the Family Cambaridae (Astacoidea), with discussion of their possible importance. Zootaxa, 4755(1):zootaxa.4755.1.3. https://doi.org/10.11646/zootaxa.4755.1.3
  83. Sesso, H. D., Buring, J. E., Norkus, E. P., & Gaziano, J. M. (2004). Plasma lycopene, other carotenoids, and retinol and the risk of cardiovascular disease in women. The American Journal of Clinical Nutrition, 79(1), 47-53. https://doi.org/10.1093/ajcn/79.1.47 PMID:14684396
  84. Shamshina, J. L., Berton, P., & Rogers, R. D. (2019). Advances in functional chitin materials: A review. ACS Sustainable Chemistry & Engineering, 7(7), 6444-6457. https://doi.org/10.1021/acssuschemeng.8b06372
  85. Sirivibulkovit, K., Nouanthavong, S., & Sameenoi, Y (2018). Paper-based DPPH assay for antioxidant activity analysis. Analytical Sciences, 34(7), 795-800. https://doi.org/10.2116/analsci.18P014 PMID:29998961
  86. Skurdal, J., & Taugbøl, T. (2002). Astacus. In D. M. Holdich (Ed.), Biology of freshwater crayfish ( 467-510). Blackwell Science Ltd.
  87. Stachowiak, B., & Szulc, P. (2021). Astaxanthin for the food industry. Molecules (Basel, Switzerland), 26(9), 2666. https:// doi.org/10.3390/molecules26092666 PMID:34063189
  88. Su, F., Huang, B., & Liu, J. (2018). The carotenoids of shrimps (Decapoda: Caridea and Dendrobranchiata) cultured in China. Journal of Crustacean Biology, 38(5), 523-530. https://doi.org/10.1093/jcbiol/ruy049
  89. Tailor, C. S., & Goyal, A. (2014). Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn. leaves. American Journal of Ethnomedicine, 1(4), 244-249.
  90. Tekelioglu, B. K., Celik, M., & Kucukgulmez, A. (2017). Canine extremity wound treatment with chitosan extracted from shrimp shells: A case report. Journal of Agricultural Science and Technology A, 7, 274-281. https://doi.org/10.17265/2161-6256/2017.04.005
  91. Tlusty, M. F., Metzler, A., Huckabone, S., Suanda, S., & Guerrier, S. (2009). Morphological colour change in the American lobster (Homarus americanus) in response to background colour and UV light. New Zealand Journal of Marine and Freshwater Research, 43(1), 247-255. https://doi.org/10.1080/00288330909509998
  92. TÜlK. (2022). Su urunleri istatistikleri. Tarim ve Orman Bakanligi, Balikculik ve Su Urunleri Genel Mudurlugu, Ankara. https:// www.tuik.gov.tr/
  93. Urquiaga, I., & Leighton, F. (2000). Plant polyphenol antioxidants and oxidative stress. Biological Research, 33(2), 55-64. https://doi.org/10.4067/S0716-97602000000200004 PMID:15693271
  94. Valgas, A. A., Wingen, N. M., Santos, S. H., Oliveira, G. T., & Araujo, P. B. (2020). Biochemical-functional parameters of red swamp crayfish Procambarus clarkii (Girard, 1852) Crustacea, Cambaridae female throughout a seasonal cycle in southeast Brazil. Marine and Freshwater Behaviour and Physiology, 53(3), 113-129. https://doi.org/10.1080/10 236244.2020.1777864
  95. Wade, N. M., Gabaudan, J., & Glencross, B. D. (2017). A review of carotenoid utilisation and function in crustacean aquaculture. Reviews in Aquaculture, 9(2), 141-156. https:// doi.org/10.1111/raq.12109
  96. Wang, W., Liu, M., Fawzy, S., Xue, Y., Wu, M., Huang, X., Yi, G., & Lin, Q. (2021). Effects of dietary Phaffia rhodozyma astaxanthin on growth performance, carotenoid analysis, biochemical and immune-physiological parameters, intestinal microbiota, and disease resistance in Penaeus monodon. Frontiers in Microbiology, 12, 762689. https:// doi.org/10.3389/fmicb.2021.762689 PMID:34803988
  97. Yanar, Y., Çelik, M., & Yanar, M. (2004). Seasonal changes in total carotenoid contents of wild marine shrimps (Penaeus semisulcatus and Metapenaeus monoceros) inhabiting the eastern Mediterranean. Food Chemistry, 88(2), 267-269. https://doi.org/10.1016/j.foodchem.2004.01.037
  98. Zeegers, M. P. A., Goldbohm, R. A., & van den Brandt, P. A. (2001). Are retinol, vitamin C, vitamin E, folate and carotenoids intake associated with bladder cancer risk? Results from the Netherlands Cohort Study. British Journal of Cancer, 85(7), 977-983. https://doi.org/10.1054/bjoc.2001.1968 PMID:11592769
  99. Zglinska, K., Jaworski, S., Rygalo-Galewska, A., Łozicki, A., Roguski, M., Matusiewicz, M., & Niemiec, T. (2022). Effect of spiny-cheek crayfish (Faxonius limosus) on H2O2-induced oxidative stress in normal fibroblast cells. Applied Sciences (Basel, Switzerland), 12(17), 8546. https://doi.org/10.3390/ app12178546
  100. Zheng, H., Liu, H., Zhang, T., Wang, S., Sun, Z., Liu, W., & Li, Y. (2010). Total carotenoid differences in scallop tissues of Chlamys nobilis (Bivalve: Pectinidae) with regard to gender and shell colour. Food Chemistry, 122(4), 1164-1167. https://doi.org/10.1016/j.foodchem.2010.03.109
DOI: https://doi.org/10.26881/oahs-2023.4.08 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 471 - 483
Submitted on: Apr 7, 2023
Accepted on: Jul 28, 2023
Published on: Dec 31, 2023
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Sefa Acarlı, Bayram Kızılkaya, Pervin Vural, Selçuk Berber, Semih Kale, Deniz Acarlı, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.