Have a personal or library account? Click to login
Annual, seasonal and spatial differences in the growth rate of Baltic cod larvae and early juveniles in relation to zooplankton biomass fluctuations in 2006-2014 Cover

Annual, seasonal and spatial differences in the growth rate of Baltic cod larvae and early juveniles in relation to zooplankton biomass fluctuations in 2006-2014

Open Access
|Dec 2023

References

  1. Anderson, J. T. (1989). A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. Journal of Northwest Atlantic Fishery Science, 8, 55-66. https://doi.org/10.2960/J.v8.a6
  2. Biernaczyk, M., Neja, Z. Opanowski, A., Stepanowska, K., Formicki, K., Wawrzyniak, W. (2016). Reproduction of cod, Gadus morhua (Actinopterygii: Gadiformes: Gadidae), from the Gdańsk Deep (Baltic Sea) under controlled conditions. Acta Ichthyologica et Piscatoria 0137-1592 46 3 239-246 https://doi.org/10.3750/AIP2016.46.3.07
  3. Boltaña, S., Sanhueza, N., Aguilar, A., Gallardo-Escarate, C., Arriagada, G., Valdes, J.A., Soto, D., Quiñones, R.A. (2017). Influences of thermal environment on fish growth. Ecol Evol. Jul 26;7(17):6814-6825. https://doi.org/10.1002/ ece3.3239
  4. Daewel, U., Hjøllo, S. S., Huret, M., Ji, R., Maar, M., Niiranen, S., Travers-Trolet, M., Peck, M. A., & van de Wolfshaar, K. E. (2014). Predation control of zooplankton dynamics: A review of observations and models.-. ICES Journal of Marine Science, 71(2), 254-271. https://doi.org/10.1093/ icesjms/fst125
  5. Diekmann, A. B. S., Clemmesen, C., St. John, M. A., Paulsen, M., & Peck, M. A. (2012). Environmental cues and constraints affecting the seasonality of dominant calanoid copepods in brackish, coastal waters: A case study of Acartia, Temora and Eurytemora species in the south-west. Publication-Baltic Marine Biologists, 159(11), 2399-2414. https://doi. org/10.1007/s00227-012-1955-0
  6. Economou A.N., (1991). Food and feeding ecology of five gadoid larvae in the northern North Sea, ICES Journal of Marine Science, 47(3), 1991, Pages 339-351, https://doi. org/10.1093/icesjms/47.3.339
  7. Fey, D. P. (2005). Is the marginal otolith increment width a reliable recent growth index for larval and juvenile herring? Journal of Fish Biology, 66, 1692-1703. https://doi. org/10.1111/j.0022-1112.2005.00716.x
  8. Fey, D. P. (2012). Length adjustment of larval and early-juvenile cod (Gadus morhua) after up to 3 years of preservation in alcohol. Journal of Applied Ichthyology, 28(4), 665-666. https://doi.org/10.1111/j.1439-0426.2011.01929.x
  9. Fey, D. P. (2015). Size and growth rate differences of larval Baltic sprat Sprattus sprattus collected with bongo and MIK nets. Journal of Fish Biology, 86(1), 355-359. https:// doi.org/10.1111/jfb.12528 PMID:25307421
  10. Fey, D. P. (2018). The effect of preserving ichthyoplankton samples in alcohol on the accuracy of data obtained from otolith microstructure examinations. Fisheries Research, 206, 198-201. https://doi.org/10.1016/j.fishres.2018.05.016
  11. Fey, D. P., & Linkowski, T. B. (2006). Predicting juvenile Baltic cod (Gadus morhua) age from body and otolith size measurements. ICES Journal of Marine Science, 63(6), 1045-1052. https://doi.org/10.1016/j.icesjms.2006.03.019
  12. Folkvord, A. (2005). Comparison of size-at-age of larval Atlantic cod (Gadus morhua) from different populations based on size-and temperature-dependent growth models. Canadian Journal of Fisheries and Aquatic Sciences, 62(5), 1037-1052. https://doi.org/10.1139/f05-008
  13. Fonseca, V. F., & Cabral, H. N. (2007). Are fish early growth and condition patterns related to life-history strategies? Reviews in Fish Biology and Fisheries, 17, 545-564. https:// doi.org/10.1007/s11160-007-9054-x
  14. Geffen, A. J. (1995). Growth and otolith microstructure of cod (Gadus morhua L.) larvae. Journal of Plankton Research, 17(4), 783-800. https://doi.org/10.1093/plankt/174.783
  15. Greszkiewicz, M., Fey, D. P. (2018). Effect of preservation in formalin and alcohol on the growth rate estimates of larval northern pike. North American Journal of Fisheries Management, 38: 601-605. DOI: 10.1002/nafm.10059
  16. Hardy, J. D., Jr. (1978). Development of fishes of the Mid-Atlantic Bight. An atlas of egg, larval and juvenile stages. Volume II, Anguillidae through Syngnathidae. Fish and Wildlife Service. U.S. Department of the Interior
  17. HELCOM. (2017). Guidelines for monitoring of mesozooplankton.
  18. Hinchliffe, C., Pepin, P., Suthers, I. M., & Falster, D. S. (2021). A novel approach for estimating growth and mortality of fish larvae.-. ICES Journal of Marine Science, 78(8), 2684-2699. https://doi.org/10.1093/icesjms/fsab161
  19. Hjort, J. (1914). Fluctuations in the great fisheries of northern Europe viewed in the light of biological research. Rapports et procès-verbaux des réunions, International Council for the Exploration of the Sea, 20, 1-228.
  20. Horbowa, K., & Fey, D. P. (2013). Atlas of early developmental stages of fish-34 species of the Southern Baltic Sea. Morski Instytut Rybacki-Panstwowy Instytut Badawczy.
  21. Houde, (2008). Emerging from Hjort’s Shadow. Fish. Sci. J. Northw. Atl. Fish. Sci. 41. 53-70. https://doi.org/10.2960/J. v41.m634.
  22. Hüssy, K., St. John, M. A., & Böttcher, U. (1997). Food resource utilization by juvenile Baltic cod Gadus morhua: A mechanism potentially influencing recruitment success at the demersal juvenile stage? Marine Ecology Progress Series, 155, 199-208. https://doi.org/10.3354/meps155199
  23. Hüssy, K., Hinrichsen, H.-H., & Huwer, B. (2012). Hydrographic influence on the spawning habitat suitability of western Baltic cod ( Gadus morhua ). ICES Journal of Marine Science, 69(10), 1736-1743. https://doi.org/10.1093/icesjms/fss136
  24. Hüssy, K., Mosegaard, H., Hinrichsen, H.-H., & Böttcher, U. (2003). Using otolith microstructure to analyse growth of juvenile Baltic cod Gadus morhua. Marine Ecology Progress Series, 258, 233-241. https://doi.org/10.3354/meps258233
  25. Huwer, B., Clemmesen, C., Grønkjær, P., & Köster, F. W. (2011). Vertical distribution and growth performance of Baltic cod larvae—Field evidence for starvation-induced recruitment regulation during the larval stage? Progress in Oceanography, 91(4), 382-396. https://doi.org/10.1016/j. pocean.2011.04.001
  26. Huwer, B., Hinrichsen, H. H., Böttcher, U., Voss, R., & Köster, F. (2014). Characteristics of juvenile survivors reveal spatio-temporal differences in early life stage survival of Baltic cod. Marine Ecology Progress Series, 511, 165-180. https:// doi.org/10.3354/meps10875
  27. ICES. (2022). Cod (Gadus morhua) in subdivisions 24-32, eastern Baltic stock (eastern Baltic Sea). In Report of the ICES Advisory Committee, 2022. ICES Advice 2022, cod.27.24-32, https://doi.org/10.17895/ices.advice.19447874
  28. ICES. (2023) Baltic Fisheries Assessment Working Group (WGBFAS). ICES Scientific Reports. 5:58. 606 pp. https:// doi.org/10.17895/ices.pub.23123768
  29. Jacobsen, S., Gaard, E., Hâtün, H., Steingrund, P., Larsen, K. M. H., Reinert, J., Ölafsdöttir, S. R., Poulsen, M., & Vang, H. B. M. (2019). Environmentally Driven Ecological Fluctuations on the Faroe Shelf Revealed by Fish Juvenile Surveys. Frontiers in Marine Science, 6, 559. https://doi.org/10.3389/ fmars.2019.00559
  30. Jacobsen, S., Nielsen, K. K., Kristiansen, R., Grønkjær, P., Gaard, E., & Steingrund, P. (2020). Diet and prey preferences of larval and pelagic juvenile Faroe Plateau cod (Gadus morhua). Marine Biology, 167, 122. https://doi.org/10.1007/S00227-020-03727-5
  31. Kamler, E. (1992). Early life history of fish: an energetics approach (4). Springer Science & Business Media. https://doi.org/10.1007/978-94-011-2324-2
  32. Köster, F. W., Huwer, B., Hinrichsen, H. H., Neumann, V., Makarchouk, A., Eero, M., Dewitz, B. V., Hüssy, K., Tomkiewicz, J., Margonski, P., Temming, A., Hermann, J.-P., Oesterwind, D., Dierking, J., Kotterba, P., & Plikshs, M. (2017). Eastern Baltic cod recruitment revisited—Dynamics and impacting factors. ICES Journal of Marine Science, 74(1), 3-19. https://doi.org/10.1093/icesjms/fsw172
  33. Motoda, S. (1959). Devices of simple plankton apparatus. Memoirs of the Faculty of Fisheries, Hokkaido University, 7, 73-94.
  34. Möllmann, C., Kornilovs, G., Fetter, M., & Köster, F. W. (2005). Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES Journal of Marine Science, 62(7), 1270-1280. https://doi.org/10.1016/j.icesjms.2005.04.021
  35. Möllmann, C., Müller-Karulis, B., Kornilovs, G., & St John, M. A. (2008). Effects of climate and overfishing on zooplankton dynamics and ecosystem structure: Regime shifts, trophic cascade, and feedback loops in a simple ecosystem. ICES Journal of Marine Science, 65(3), 302-310. https://doi. org/10.1093/icesjms/fsm197
  36. Oeberst, R., & Böttcher, U. (1998). Development of juvenile Baltic cod described with meristic, morphometric and sagitta otolith parameters. ICES Document CM, CC, 15.
  37. Otterlei, E., Nyhammer, G., Folkvord, A., & Stefansson, S. O. (1999). Temperature-and size-dependent growth of larval and early juvenile Atlantic cod (Gadus morhua): A comparative study of Norwegian coastal cod and northeast Arctic cod. Canadian Journal of Fisheries and Aquatic Sciences, 56(11), 2099-2111. https://doi. org/10.1139/f99-168
  38. Otto, S. A., Diekmann, R., Flinkman, J., Kornilovs, G., & Möllmann, C. (2014). Habitat heterogeneity determines climate impact on zooplankton community structure and dynamics. PLoS One, 9(3), e90875. https://doi.org/10.1371/ journal.pone.0090875 PMID:24614110
  39. Otto, S. A., Niiranen, S., Blenckner, T., Tomczak, M. T., Müller-Karulis, B., Rubene, G., & Möllmann, C. (2020). Life Cycle Dynamics of a Key Marine Species Under Multiple Stressors Frontiers in Marine 296, https://www.frontiersin. org/article/10.3389/fmars.2020.00296D0I = 10.3389/ fmars.2020.00296
  40. Pinsky, M. L., & Byler, D. (2015). Fishing, fast growth and climate variability increase the risk of collapse Proceedings of the Royal Society. B, Biological sciences, 2015-08-22, Vol.282 (1813), 20151053-20151053
  41. Radtke, R. L. (1989). Larval fish age, growth, and body shrinkage: Information available from otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 46(11), 1884-1894. https://doi.org/10.1139/f89-237
  42. Radtke, R. L., & Fey, D. P. (1996). Environmental effects on primary increment formation in the otoliths of newly-hatched Arctic charr. Journal of Fish Biology, 48(6), 1238-1255. https://doi.org/10.1006/jfbi.1996.0124
  43. Robert, D., Shoji, J., Sirois, P., Takasuka, A., Catalán, I. A., Folkvord, A., Ludsin, S. A., Peck, M. A., Sponaugle, S., Ayón, P. M., Brodeur, R. D., Campbell, E. Y., D’Alessandro, E. K., Dower, J. F., Fortier, L., García, A. G., Huebert, K. B., Hufnagl, M., Ito, S., … Pepin, P. (2023). Life in the fast lane: Revisiting the fast growth—High survival paradigm during the early life stages of fishes. Fish and Fisheries, 24(5), 863-888. https:// doi.org/10.1111/faf.12774
  44. Schmidt, J. O., & Hinrichsen, H. H. (2008). Impact of prey field variability on early cod Gadus morhua larval survival: A sensitivity study of a Baltic cod individual-based model. Oceanología, 50(2), 205-220.
  45. Spich, K., & Fey, D. P. (2020). Consequences of differences among readers in age estimations of Baltic cod larvae and early juveniles for growth rate and hatch date analysis. Is more experience always better? Fisheries Research, 225, 105500. https://doi.org/10.1016/j.fishres.2020.105500
  46. Spich, K., & Fey, D. P. (2022). Using otolith microstructure analysis in studies on the ecology of the early life stages of cod, Gadus morhua L.: A review. Fisheries Research, 250, 106265. https://doi.org/10.1016/j.fishres.2022.106265
  47. Steffensen (1980). Daily growth increments observed in otoliths from juvenile East Baltic cod. Dana, 1, 29-37.
  48. Suthers, I. M., White, Z., Hinchliffe, C., Falster, D. S., Richardson, A. J., & Everett, J. D. (2022). The mortality/growth ratio of larval fish and the slope of the zooplankton size-spectrum. Fish and Fisheries, 23(3), 750-757. https://doi.org/10.1111/ faf.12633
  49. Takasuka, A., Sakai, A., & Aoki, I. (2017). Dynamics of growthbased survival mechanisms in Japanese anchovy (Engraulis japonicus) larvae. Canadian Journal of Fisheries and Aquatic Sciences, 74(6), 812-823. https://doi.org/10.1139/ cjfas-2016-0120
  50. Voss, R., Köster, F., & Dickmann, M. (2003). Comparing the feeding habits of co-occurring sprat (Sprattus sprattus) and cod (Gadus morhua) larvae in the Bornholm Basin, Baltic Sea. Fisheries Research, 63(1), 97-111. https://doi. org/10.1016/S0165-7836(02)00282-5
  51. Witek, Z., Breuel, G., Wolska-Pys, M., Gruszka, P., Krajewska-Soltys, A., Ejsymont, L., & Sujak, D. (1996). Comparison of different methods of Baltic zooplankton biomass estimations. Proceedings of the XII BMB Sympozjum, Institute of Aquatic Ecology, University of Latvia: 87-92
  52. Zuzarte, F., Koster, F. W., Möllmann, C., Voss, R., Grønkjær, P. (1996). Diet composition of cod larvae in the Bornholm Basin. ICES CM 1996/J:19
DOI: https://doi.org/10.26881/oahs-2023.4.02 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 399 - 419
Submitted on: Jul 30, 2023
Accepted on: Nov 15, 2023
Published on: Dec 31, 2023
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Katarzyna Spich, Dariusz Piotr Fey, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.