Have a personal or library account? Click to login
Evaluation of methods for determining the LS index at different resolutions for soil erosion modeling using the RUSLE method Cover

Evaluation of methods for determining the LS index at different resolutions for soil erosion modeling using the RUSLE method

By: Damian Badora and  Rafał Wawer  
Open Access
|Mar 2024

References

  1. Badora D., Wawer R., 2022. Effect of DTM resolution on the determination of slope values in an upland catchment using different computational algorithms. Polish Journal of Agronomy, 51: 11-32, https://doi.org/10.26114/pja.iung.460.2022.51.02.
  2. Bauer J., Rohdenburg H., Bork H.R., 1985. Ein Digitales Reliefmodell als Vorraussetzung fuer ein deterministisches Modell der Wasser- und Stoff-Fluesse, Landschaftsgenese und Landschaftsoekologie, H.10, Parameteraufbereitung fuer deterministische Gebiets-Wassermodelle, Grundlagenarbeiten zu Analyse von Agrar-Oekosystemen; Eds.: Bork, H.-R. / Rohdenburg, H., pp. 1-15.
  3. Boehner J., Selige T., 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation. In: SAGA - Analysis and Modelling Applications; Boehner J., McCloy K.R., Strobl J.; Goettinger Geographische Abhandlungen, 115: 13-27.
  4. Borrelli P., Alewell C., Alvarez P., Anache J.A.A., Baartman J., et al., 2021. Soil Erosion Modelling: A Global Review and Statistical Analysis. Science of The Total Environment, 780, 146494, https://doi.org/10.1016/j.scitotenv.2021.146494.
  5. Chałubińska A., Wilgat T., 1954. Podział fizjograficzny woj. lubelskiego. Przewodnik V Ogólnopolskiego Zjazdu Polskiego Towarzystwa Geograficznego, Lublin.
  6. CODGiK, 2013. Centralny Ośrodek Dokumentacji Geodezyjnej i Kartograficznej. Online: https://www.codgik.gov.pl/ (accessed: 02.04.2020).
  7. Desmet P.J., Govers G., 1996a. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of Soil and Water Conservation, 51(5): 427-433.
  8. Desmet P.J., Govers G., 1996b. Comparison of routing algorithms for digital elevation models and their implications for predicting ephemeral gullies. International Journal of Geographical Information Systems, 10: 311-331, https://doi.org/10.1080/02693799608902081.
  9. Desmet P.J., Govers G., 1997. Comment on ‘Modelling topo-graphic potential for erosion and deposition using GIS’. International Journal of Geographical Information Systems, 11: 603-610, https://doi.org/10.1080/136588197242211.
  10. Drzewiecki W., Ziętara S., 2013. Influence of the algorithm for determining surface runoff pathways on the results of water erosion risk assessment of soils at the catchment scale using the RUSLE model, Polish Spatial Information Society, Roczniki Geomatyki, XI, 1(58): 58-68.
  11. Foster G.R., Wischmeier W.H., 1974. Evaluating irregular slopes for soil loss prediction. Transactions of the ASAE, 17(2): 0305-0309, doi: 10.13031/2013.36846.
  12. Józefaciuk Cz., Józefaciuk A., 1996. Mechanizm i wskazówki metodyczne badania procesów erozji. Biblioteka Monitor-ingu Środowiska, Warszawa.
  13. Józefaciuk Cz., Józefaciuk A., Nowocień E., Wawer R., 2002. Antierosion management of upland watershed of Grodarz stream aimed at reducing of flood occurrence. [Przeciwerozyjne zagospodarowanie zlewni wyżynnej potoku Grodarz z uwzględnieniem ograniczania występowania powodzi] Monografie i rozprawy naukowe IUNG-PIB, ISBN: 8388031848. [in Polish + summary in English]
  14. Józefaciuk A., Nowocień E., Wawer R., 2014. Soil erosion in Poland – environmental and economic effects, remedial action. [Erozja gleb w Polsce – skutki środowiskowe i gospodarcze, działania zaradcze] Monografie i rozprawy naukowe IUNG-PIB, 44, 259 pp., ISBN: 978-83-7562-182-2. [in Polish + summary in English]
  15. Jurga B., Wawer R., Kęsik K., 2018. Zlewnia rzeki Bystrej jako przykład wyżynnej zlewni rolniczej o wysokich zdolnościach buforowych względem fosforu – Studium przypadku. Rolnictwo XXI Wieku – Problemy i Wyzwania, red. Łuczycka D. Idea Knowledge Future, Wrocław, ISBN: 978-83-945311-9-5.
  16. Karásek P., Pochop M., Konečná J., Podhrázská J., 2022. Comparison of the methods for LS factor calculation when evaluating the erosion risk in a small agricultural area using the USLE tool. Journal of Ecological Engineering, 23(1): 100-109, https://doi.org/10.12911/22998993/143977.
  17. Kowalczyk A., Twardy S., 2012. The magnitude of water erosion calculated with the USLE method. Institute of Technology and Life Sciences, Malopolska Research Centre in Krakow, I-III, vol. 12, z. 1, 37: 83-92.
  18. McCool D.K., Foster G.R., Mutchler C.K., Meyer L.D., 1989. Revised slope length factor for the Universal Soil Loss Equation. Transactions of ASAE, 32(5): 1571-1576, doi: 10.13031/2013.31192.
  19. Mitasova H., Hofierka J., Zlocha M., Iverson R. L., 1996. Modelling topographic potential for erosion and deposition using GIS. International Journal of Geographic Information Science, 10(5): 629-641, https://doi.org/10.1080/02693799608902101.
  20. Mitasova H., Mitas L., Brown W.M., Johnston D.M., 1998. Multidimensional soil erosion/deposition modelling and visualization using GIS. Final report for USA CERL. University of Illinois, Urbana-Champaign, IL.
  21. Mitasova H., Mitas L., Brown W.M., Johnston D.M., 1999. Terrain modeling and soil erosion simulations for Fort Hood and Fort Polk test areas. Annual report for USA CERL. University of Illinois, Urbana-Champaign, IL.
  22. Moore I.D., Burch G.J., 1986a. Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Science Society Journal, 50(5): 1294-1298.
  23. Moore I.D., Burch G.J., 1986b, Sediment transport capacity of sheet and rill flow: Application of unit stream power theory. Water Resources Research, 22: 1350-1360, https://doi.org/10.1029/WR022i008p01350.
  24. Moore I.D., Grayson R.B., Ladson A.R., 1991. Digital terrain modelling: a review of hydrogical, geomorphological, and biological applications. Hydrological Processes, 5(1): 3-30, https://doi.org/10.1002/hyp.3360050103.
  25. Moore I.D., Wilson J.P., 1992. Length-slope factors for the Revised Universal Soil Loss Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47(5): 423-428.
  26. MPHP, 2017. Komputerowa Mapa Podziału Hydro-graficznego. Online: https://danepubliczne.gov.pl/dataset?q=zlewnia&sort=metadata_modified+desc (accessed: 04.07.2021).
  27. Mularz S., Drzewiecki W., 2007. Assessment of the threat of water erosion to soils in the Dobczycki reservoir area based on the results of numerical modelling, Department of Geo-information, Photogrammetry and Remote Sensing of the Environment, AGH University of Science and Technology in Krakow, Archives of Photogrammetry, Cartography and Remote Sensing, 17b: 535-548.
  28. Niedźwiecki J., Ukalska-Jaruga A., Gałązka A., Wawer R., Nowocień E., Klimkowicz-Pawlas A., 2020. Najlepsze sposoby zarządzania glebami użytkowanymi rolniczo w kontekście zmian klimatycznych. Poradnik dla doradców rolnych. Red. Niedźwiecki J., Wydawnictwa IUNG-PIB, Puławy, ISBN: 978-83-7562-340-6.
  29. Nowocień E., 2008. Wybrane zagadnienia erozji gleb w Polsce. Studia i Raporty IUNG-PIB, 10: 9-38, https://doi.org/doi:10.26114/sir.iung.2008.10.01.
  30. O’Callaghan J.F., Mark D.M., 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28: 323-344.
  31. Renard K.G., Foster G.R., Weesies G.A., Porter J.P., 1991. RUSLE: Revised Universal Soil Loss Equation. Journal of Soil and Water Conservation, 46(1): 30-33.
  32. Panagos P., Borrelli P., Meusburger K., 2015. A New European Slope Length and Steepness Factor (LS-Factor) for modeling soil erosion by water. Geosciences, 5: 117-126, https://doi.org/10.3390/geosciences5020117.
  33. Podolski B., 2008. Agrotechnika przeciwerozyjna. pp. 69-78. In: Problem erozji gleb w procesie przemian strukturalnych na obszarach wiejskich. Studia i Raporty IUNG-PIB, 10, https://doi.org/10.26114/sir.iung.2008.10.04.
  34. QGIS, 2005. Quantum GIS 2.18.5. Online: http://www.qgis.org/pl/site/index.html (accessed 03.03.2020).
  35. Renard K.G., Foster G.R., Weesies G.A., McCool D.K., Yoder D.C., 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture, Agriculture Handbook No. 703.
  36. SAGA GIS, 2004. System of Automated Geoscientific Analyses. Online: https://saga-gis.sourceforge.io/en/index.html (accessed: 29.08.2022).
  37. Šúri M., Cebecauer T., Hofierka J., Fulajtar E., 2002. Soil erosion assessment of Slovakia at a regional scale using GIS. Ekologia Bratislava, 21: 404-422.
  38. Szpikowski J., Majewski M., Madaj W., 2018. Conditions for soil erosion by water in the upper Parsęta catchment. Land-form Analysis, 36: 55-69.
  39. Urbański J., 2012. GIS in nature research. http://ocean.ug.edu.pl/~oceju/CentreGIS/data/GIS_in_nature_research_12_2.pdf (accessed 07.03.2017).
  40. Wawer R., Nowocień E., 2018. Erozja wodna i wietrzna w Polsce. Studia i Raporty IUNG-PIB, 58(12): 57-79.
  41. Wischmeier W.H., Smith D.D., 1978. Predicting rainfall erosion losses - A guide to conservation planning. USDA Handbook 537, Washington, D.C.
  42. Woch F., 2008. Analiza metod przeciwerozyjnej ochrony gleb stosowanych w procesie urządzeniowym. Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, 17(2): 12-24, ISSN 1732-9353.
  43. Zevenbergen L.W., Thorne C.R., 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Land-forms, 12: 47-56.
DOI: https://doi.org/10.26114/pja.iung.522.2023.52.12 | Journal eISSN: 3071-740X | Journal ISSN: 2081-2787
Language: English
Page range: 110 - 122
Submitted on: Nov 14, 2023
Accepted on: Dec 19, 2023
Published on: Mar 12, 2024
Published by: Institute of Soil Science and Plant Cultivation
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Damian Badora, Rafał Wawer, published by Institute of Soil Science and Plant Cultivation
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.