Have a personal or library account? Click to login
Diversity of Nicotiana species Cover
Open Access
|Mar 2024

References

  1. Augsten M., Burkowski Meyer P., Freitas L.B., Batista J.A.N., Stehmann J.R., 2022. Nicotiana gandarela (Solanaceae), a new species of ‘tobacco’ highly endangered from the Quadrilátero Ferrífero in Brazil. PhytoKeys, 190: 113-129.
  2. Bai D.P., Reeleder R., Brandle J.E., 1996. Production and characterization of tobacco addition lines carrying N. debneyi chromosomes with a gene for resistance to black root rot. Crop Science, 36: 852-857, doi: 10.2135/CROPSCI1996.00 11183X003600040005X.
  3. Bakaher N., 2020. Genetic markers in tobacco, usage for map development, diversity studies, and quantitative trait loci analysis. pp. 43-49. In: The Tobacco Plant Genome. Compendium of Plant Genomes; eds: Ivanov, N.V., Sierro, N., Peitsch, M.C.; Springer, Cham. https://doi.org/10.1007/978-3-030-29493-9_3.
  4. Bally J., Marks C.E., Jung H., Jia F., Roden S., Cooper T., Newbigin E., Waterhouse P.M., 2021. Nicotiana paul-ineana, a new Australian species in Nicotiana section Suaveolentes. Australian Systematic, 34: 477-484, https://doi.org/10.1071/SB20025.
  5. Berbeć A., Doroszewska T., 2020. The use of Nicotiana species in tobacco improvement. pp. 101-146. In: The Tobacco Plant Genome. Compendium of Plant Genomes; eds: Ivanov N.V., Sierro N., Peitsch M.C.; Springer, Cham. https://doi.org/10.1007/978-3-030-29493-9_8.
  6. Berbeć A., Madej A., 2012. Obecna sytuacja i perspektywy uprawy tytoniu w Polsce na tle świata i Unii Europejskiej. Studia i Raporty IUNG-PIB, 31(5): 51-67, doi: 10.26114/sir. iung.2012.31.04.
  7. Berbeć A., Trojak-Goluch A., 2001. Response to black root rot Thielaviopsis tabacina Ferr. of several flue-cured tobacco Nicotiana tabacum L. genotypes in different testing environments. Plant Breeding and Seed Science, 45: 11-20.
  8. Bindler G., Plieske J., Bakaher N., Gunduz I., Ivanov N., Van der Hoeven R., Ganal M., Donini P., 2011. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theoretical and Applied Genetics, 123: 219-230, doi: 10.1007/s00122-011-1578-8.
  9. Bindler G., Van der Hoeven R., Gunduz I., Pliske J., Ganal M., Rossi L., Gadani F., Donini P., 2007. A microsatellite marker based linkage map of tobacco. Theoretical and Applied Genetics, 114: 341-349, doi: 10.1007/s00122-006-0437-5.
  10. Bland M.M., Matzinger D.F., Levings C.S., 1985. Comparison of the mitochondrial genome of Nicotiana tabacum with its progenitor species. Theoretical and Applied Genetics, 69: 535-541, doi: 10.1007/BF00251100.
  11. Bombarely A., Rosli H.G., Vrebalov J., Moffett P., Mueller L., Martin G., 2012. A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Molecular Plant-Microbe Interactions, 25: 1523-1530, https://doi.org/10.1094/MPMI-06-12-0148-TA.
  12. Brandle J.E., Rogers W.D., Ankersmit J.C.D., 1997. AC Gayed flue-cured tobacco. Canadian Journal of Plant Science, 77: 157-158, https://doi.org/10.4141/P96-067.
  13. Brokmöller T., Ling Z., Li D., Gaquerel E., Baldwin I.I., Xu S., 2017. Nicotiana attenuata Data Hub (NaDH): an integrative platform for exploring genomic, transcriptomic and metabolomic data in wild tobacco. BMC Genomics, 18:79, doi: 10.1186/s12864-016-3465-9.
  14. Burbidge N.T., 1960. The Australian species of Nicotiana L. (Solanaceae). Australian Journal of Botany, 8: 342-380, https://doi.org/10.1071/BT9600342.
  15. Cauz-Santos L.A., Dodsworth S., Samuel R., Christenhusz M.J.M., Patel D., Shittu T., Jakob A., Paun O., Chase M.W., 2022. Genomic insights into species divergence in Nicotiana benthamiana and natural variation in Rdr1 gene controlling viral susceptibility. The Plant Journal, 111: 7-18, https://doi.org/10.1111/tpj.15801.
  16. Chase M.W., Cauz-Santos L.A., Dodsworth S., Christen-husz M.J.M., 2022. Taxonomy of the Australian Nicotiana benthamiana complex (Nicotiana section Suaveolentes; Solanaceae): five species, four newly described, with distinct ranges and morphologies. Australian Systematic Botany, 35(5): 345-363, https://doi.org/10.1071/SB22009.
  17. Chase M.W., Christenhusz M.J.M., 2018a. 883. NICOTIANA KARIJINI. Curtis’s Botanical Magazine, 35: 228-236, https://doi.org/10.1111/curt.12242.
  18. Chase M.W., Christenhusz M.J.M., 2018b. 885. NICOTIANA GASCOYNICA. Curtis’s Botanical Magazine, 35: 245-252, https://doi.org/10.1111/curt.12244.
  19. Chase M.W., Christenhusz M.J.M., 2018c. 890. NICOTIANA BENTHAMIANA. Solanaceae. Curtis’s Botanical Magazine, 35(3): 286-294, https://doi.org/10.1111/curt.12249.
  20. Chase M.W., Christenhusz M.J.M., 2021a. 998. NICOTIANA PILA. Solanaceae. Curtis’s Botanical Magazine, 38(3): 394-404, https://doi.org/10.1111/curt.12406.
  21. Chase M.W., Christenhusz M.J.M., 2021b. 994. NICOTIANA INSECTICIDA. Solanaceae. Curtis’s Botanical Magazine, 38 (3): 350-364, https://doi.org/10.1111/curt.12402.
  22. Chase M.W., Christenhusz M.J.M., Conran J.G., Dodsworth S., Medeiros Nollet, de Assis F., Felix L.P., Fay M.F., 2018a. Unexpected diversity of Australian tobacco species (Nicotiana section Suaveolentes, Solanaceae). Curtis’s Botanical Magazine, 35: 212-227, https://doi.org/10.1111/curt.12241.
  23. Chase M.W., Conran J.G., Christenhusz M.J.M., 2018b. 884. NICOTIANA YANDINGA. Curtis’s Botanical Magazine, 35: 237-244, https://doi.org/10.1111/curt.12243.
  24. Chase M.W., Conran J.G., Christenhusz M.J.M., 2018c. 886. NICOTIANA FAUCICOLA. Curtis’s Botanical Magazine, 35: 253-260, https://doi.org/10.1111/curt.12245.
  25. Chase M.W., Dodsworth S., Christenhusz M.J.M., 2021a. 989. NICOTIANA WALPA. Solanaceae. Curtis’s Botanical Magazine, 38 (3): 298-308, https://doi.org/10.1111/curt.12396.
  26. Chase M.W., Fay M.F., Christenhusz M.J.M., 2021b. 1000. NICOTIANA SALINA. Suaveolens. Curtis’s Botanical Magazine, 38 (3): 416-424, https://doi.org/10.1111/curt.12408.
  27. Chase M.W., Fay M.F., Nollet F., Christenhusz M.J.M., 2021c. 993. NICOTIANA NOTHA. Curtis’s Botanical Magazine, 38(3): 340-349, https://doi.org/10.1111/curt.12401.
  28. Chase M.W., Knapp S., Cauz-Santos L.A., Christenhusz M.J.M., 2021d. (2845) Proposal to conserve the name Nicotiana benthamiana (N. suaveolens var. cordifolia) (Solanaceae) with a conserved type. Taxon, 70(5): 1146-1147, https://doi.org/10.1002/tax.12587.
  29. Chase M.W., Knapp S., Cox A.V., Clarkson J.J., Butsko Y., Joseph J., Savolainen V., Parokonny A.S., 2003. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Annals of Botany, 92: 107-127, doi: 10.1093/aob/mcg087.
  30. Chase M.W., Palsson R.L., Christenhusz M.J.M., 2021e. 995. NICOTIANA HOSKINGII. Curtis’s Botanical Magazine, 38(3): 365-373, https://doi.org/10.1111/curt.12403.
  31. Chase M.W., Przeslawski R.A., Falvey L.E., Fay M.F., Chris-tenhusz M.J.M. 2021f. 997. NICOTIANA MURCHISONICA. Curtis’s Botanical Magazine, 38 (3): 383-393, https://doi.org/10.1111/curt.12405.
  32. Cheng L., Chen X., Jiang C., Ma B., Ren M., Cheng Y, Liu D., Geng R., Yang A., 2019. High-density SNP genetic linkage map construction and quantitative trait locus mapping for resistance to cucumber mosaic virus in tobacco (Nicotiana tabacum L.). The Crop Journal, 7: 539-547, https://doi.org/10.1016/j.cj.2018.11.010.
  33. Clarkson J.R., Symon D.E., 1991. Nicotiana wuttkei (Solanaceae), a new species from north-eastern Queensland with an unusual chromosome number. Austrobaileya, 3(3): 389-392.
  34. Clarkson J.J., Dodsworth S., Chase M.W., 2017. Time calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Plant Systematics and Evolution, 303: 1001-1012.
  35. Clarkson J.J., Knapp S., Garcia V.F., Olmstead R.G., Leitch A.R., Chase M.W., 2004. Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Molecular Phylogenetics and Evolution, 33: 75-90, doi: 10.1016/j.ympev.2004.05.002.
  36. Clayton E.E., 1947. A wildfire resistant tobacco. Journal of Heredity, 38: 35-40, https://doi.org/10.1093/oxfordjournals.jhered.a105684.
  37. Clayton E.E., 1969. The study of resistance to the black root rot disease of tobacco. Tob. Sci., 13: 30-37.
  38. Czubacka A., 2022. The use of the Polish germplasm collection of Nicotiana tabacum in research and tobacco breeding for disease resistance. Agriculture, 12(12), 1994, https://doi.org/10.3390/agriculture12121994.
  39. Depta A., Kawka M., Kursa K., Doroszewska T., 2012. Nowoczesne metody i techniki w ulepszaniu genotypów tytoniu dla produkcji rolniczej i poprawy jakości surowca. Studia i Raporty IUNG-PIB, 31(5): 69-131, doi: 10.26114/sir. iung.2012.31.05.
  40. Dewey R.E., Xie J., 2013. Molecular genetics of alkaloid biosyn-thesis in Nicotiana tabacum. Phytochemistry, 94: 10-27, doi: 10.1016/j.phytochem.2013.06.002.
  41. Doroszewska T., 2007. Uzyskanie stabilnych linii hodowlanych tytoniu z czynnikami odporności na różne izolaty wirusa Y ziemniaka (PVY) od dzikiego gatunku Nicotiana africana Merxm. Biuletyn IHAR, 244: 273-287.
  42. Doroszewska T., 2010. Transfer of tolerance to different Potato virus Y (PVY) isolates from Nicotiana africana Merxm. to Nicotiana tabacum L. Plant Breeding, 129(1): 76-81, https://doi.org/10.1111/j.1439-0523.2009.01634.x.
  43. Doroszewska T., Depta A., 2011. Resistance of wild Nicotiana species to different PVY isolates. Phytopathologia, 59: 9-24.
  44. Doroszewska T., Depta A., Czubacka A., 2009. Album gatunków z rodzaju Nicotiana / Album of Nicotiana species. Institute of Soil Science and Plant Cultivation. National Research Institute, Puławy.
  45. Drake-Stowe K., Bakaher N., Goepfert S. et al., 2017. Multiple disease resistance loci affect soilborne disease resistance in tobacco (Nicotiana tabacum). Phytopathology, 107(9): 1055-1061, https://doi.org/10.1094/PHYTO-03-17-0118-R.
  46. Edwards K.D., Fernandez-Pozo N., Drake-Stowe K., Humphry M., Evans A.D., Bombarely A., Allen F., Hurst R., White B., Kernodle S.P., Bromley J.R., Sanchez-Tamburrino J. P., Lewis R.S., Mueller L.A., 2017. A reference genome for Nicotiana tabacum enables map-based cloning of homeologous loci implicated in nitrogen utilization efficiency. BMC Genomics, 18:448.
  47. Eich E., 2008. Solanaceae and Convolvulaceae: secondary metabolites: biosynthesis, chemotaxonomy, biological and economic significance (a handbook). Springer.
  48. Gajos Z., 1987. Polalta, the first Polish tobacco variety resistant to Tomato spotted wilt virus was released for regional experimentation and propagation. Wiadomości Tytoniowe, 31: 11-17.
  49. Gajos Z., 1993. Virginia ZG-4 (Wiktoria) – A new tobacco variety resistant to Tomato spotted wilt virus (TSWV) and black root rot (Thielaviopsis basicola Ferr.). Biuletyn Centralnego Laboratorium Przemysłu Tytoniowego, 1–4: 5–19.
  50. Gebhardt C., 2016. The historical role of species from the Solanaceae plant family in genetic research. Theoretical and Applied Genetics, 129: 2281-2294, doi: 10.1007/s00122-016-2804-1.
  51. Głażewska Z., 1977. Odporność dzikich gatunków Nicotiana oraz odmian N. tabacum i N. rustica na nekrotyczne szczepy wirusa Y. Mat. XVII Sesji Nauk., IOR Poznań, pp. 277-287.
  52. Goodspeed T.H., 1954. The genus Nicotiana: origins, relationships and evolution of its species in the light of their distribution, morphology and cytogenetics. Chronica Botanica, pp. 161-536.
  53. Hecht S., 2003. Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nature Reviews Cancer, 3: 733-744, doi: 10.1038/nrc1190.
  54. Hoffbeck I.J., Neas M.O., Heggestad H.E., Skoog H.A., 1965. Burley 49, a new disease resistant burley tobacco. Bulletin, University of Tennessee Agricultural Experiment Station, 395.
  55. Holmes F.O., 1938. Inheritance of resistance to tobacco mosaic disease in tobacco. Phytopathology, 28: 553-561.
  56. Julio E., Denoyes-Rothan B., Verrier J.L., Dorlhac Borne F., 2006. Detection of QTLs linked to leaf and smoke properties in Nicotiana tabacum based on a study of 114 recombinant inbred lines. Molecular Breeding, 18: 69-91.
  57. Kelly L.J., Leitch A.R., Clarkson J.J., Knapp S., Chase M.W., 2012. Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section Suaveolentes). Evolution, 67-1: 80-94.
  58. Kenton A., Parokonny A.S., Gleba Y.Y., Bennett M.D., 1993. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Molecular and General Genetics, 240: 159-169, doi: 10.1007/BF00277053.
  59. Khafizova G., Dobrynin P., Polev D., Matveeva T., 2018. Nicotiana glauca whole-genome investigation for cTDNA study. BMC Research Notes, 11:18.
  60. Knapp S., 2020. Biodiversity of Nicotiana (Solanaceae). pp. 21-41. In: The Tobacco Plant Genome, Compendium of Plant Genomes; eds: Ivanov N.V. et al.
  61. Knapp S., Chase M.W., Clarkson J.J., 2004. Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon, 53(1): 73-82, doi: 10.2307/4135490.
  62. Kostoff D., 1943. The cytogenetics of Nicotiana. State Printing House, Sofia.
  63. Laskowska D., Berbeć A., 2010. TSWV resistance in DH lines of tobacco (Nicotiana tabacum L.) obtained from a hybrid between ‘Polalta’ and ‘Wiślica’. Plant Breeding, 129: 731-733, https://doi.org/10.1111/j.1439-0523.2009.01747.x.
  64. Lewis R.L., 2021. Long-term public maintenance of Nicotiana germplasm. Nicotiana Germplasm Collection Task Force. Final Report. CORESTA, November.
  65. Lewis R.S., 2005. Transfer of resistance to potato virus Y (PVY) from Nicotiana africana to Nicotiana tabacum: possible influence of tissue culture on the rate of introgression. Theoretical and Applied Genetics, 110: 678-687, doi: 10.1007/s00122-004-1893-4.
  66. Lewis R.S., 2007. Evaluation of Nicotiana tabacum genotypes possessing Nicotiana africana-derived genetic tolerance to Potato Virus Y. Crop Science, 47: 1975-1984, https://doi.org/10.2135/cropsci2007.01.0001.
  67. Lewis R.S., Bowen S.W., Keogh M.R., Dewey R.E., 2010. Three nicotine demethylase genes mediate nornicotine accumulation in tobacco: functional characterization of the CYP82E10 gene. Phytochemistry, 71: 1988-1998, doi: 10.1016/j.phytochem.2010.09.011.
  68. Lim K. Y., Matyasek R., Kovarik A., Leitch A.R., 2004. Genome evolution in allotetraploid Nicotiana. Biological Journal of the Linnean Society, 82: 599-606, https://doi.org/10.1111/j.1095-8312.2004.00344.x.
  69. Merxmüller H., Butler K.P., 1975. Nicotiana in der Afrikanischen Namib – ein Pflanzengeographisches und Phylogenetisches Ratsel. Mitteilungen aus der Botanischen Staatssammlung München, 12: 91-104.
  70. Miller R.D., 1987. Registration of TN 86 burley tobacco. Crop Science, 27: 365-366, https://doi.org/10.2135/cropsci1987.0011183X002700020059x.
  71. Nagata T., 2004. When I encountered tobacco BY-2 cells! Bio-technology in Agriculture and Forestry, 53: 1-5.
  72. Naim F., Nakasugi K., Crowhurst R.N., Hilario E., Zwart A.B., Hellens R.P., Taylor J.M., Waterhouse P.M., Wood C.C., 2012. Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS ONE, 7:e52717, https://doi.org/10.1371/journal.pone.0052717.
  73. Navarro-Quezada A., Gase K., Singh R.K., Pandey S.P., Baldwin I.T., 2020. Nicotiana attenuata genome reveals genes in the molecular machinery behind remarkable adaptive phenotypic plasticity. The Tobacco Plant Genome, pp. 211-229.
  74. Palakarcheva M., 1995. Transfer of disease resistance genes by interspecific hybridization of wild growing Nicotiana species in Nicotiana tabacum. Journal of Genetics and Breeding, pp. 99-105.
  75. Pombo M.A., Rosli H.G., Fernandez-Pozo N., Bombarely A., 2020. Nicotiana benthamiana, a popular model for genome evolution and plant-pathogen interactions. The Tobacco Plant Genome, 14: 231-247.
  76. Przybyś M., 2012. Tytoń – zielony bioreaktor. Studia i Raporty IUNG-PIB, 31(5): 133-154, doi: 10.26114/sir. iung.2012.31.06.
  77. Sallaud C., Giacalone C., Töpfer R. et al., 2012. Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant Journal, 72(1): 1-17. Erratum in: Plant Journal, 2013, 74(4):713.
  78. Schweppenhauser M.A., 1968. Recent advances in breeding tobacco resistant to Meloidogyne javanica. CORESTA Inf. Bull., 1: 9-20.
  79. Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T., Zaita N., Chunwongse J., Obokata J., Yamaguchi-Shinozaki K., 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J, 5: 2043, doi: 10.1002/j.1460-2075.1986.tb04464.x.
  80. Shoji T., Kajikawa M., Hashimoto T., 2010. Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. Plant Cell, 22(10): 3390-3409, https://doi.org/10.1105/tpc.110.078543.
  81. Sierro N., Battey J.N.D., Ouadi S., Bakaher N., Bovet L., Willing A., Geopfert S., Peitsch M.C., Ivanov N.V., 2014. The tobacco genome sequence and its comparison with those of tomato and potato. Nature Communications, 8;5: 3833.
  82. Sierro N., Battey J.N.D., Bovet L., Liedschulte V., Ouadi S.,Thomas J., Broye H., Laparra H., Vuarnoz A., Lang G., Goepfert S., Peitsch M.C., Ivanov N.V., 2018. The impact of genome evolution on the allotetraploid Nicotiana rustica – an intriguing story of enhanced alkaloid production. BMC Genomics, 19: 855.
  83. Sierro N., Battey J.N.D., Ouadi S., Bovet L., Goepfert S., Bakaher N., Peitsch M.C., Ivanov N.V., 2013. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biology, 14(6): R60.
  84. Sievert R.C., 1972. Sources of resistance to potato virus Y in the genus Nicotiana. Tobacco Science, 106: 92-94.
  85. Sisson V.A., Severson R.F., 1990. Alkaloid composition of the Nicotiana species. Beitrage zur Tabakforschung International, 14(6): 327-339, doi: 102478/cttr-2013-0610.
  86. Stavely J.R., Pittarelli G.W., Burk L.G., 1973. Nicotiana repanda as a potential source for disease resistance in N. tabacum. Journal of Heredity, 64: 265-271, doi: 10.1093/oxfordjournals.jhered.a108409.
  87. Stehmann J.R., Semir J., Ippolito A., 2002. Nicotiana mutabilis (Solanaceae), a new species from southern Brazil. Kew Bulletin, 57: 639-646.
  88. Symon D.E., 1998. A new Nicotiana (Solanaceae) from near Coober Pedy, South Australia. Journal of the Adelaide Botanic Gardens, 18: 1-4.
  89. Symon D.E., Keneally K.F., 1994. A new species of Nicotiana (Solanaceae) from near Broome, Western Australia. Nuytsia. The journal of the Western Australian Herbarium, 9: 421-425, https://doi.org/10.58828/nuy00219.
  90. Symon D.E., Lepschi B.J., 2007. A new status in Nicotiana (Solanaceae): N. monoschizocarpa (P. Horton) Symon & Lepschi. Journal of the Adelaide Botanic Gardens, 21: 92.
  91. Thimmegowda G.C., Ramadoss S.K., Kaikala V., Rathinavelu R., Thamalampudi V.R., Dhavala V.N.C., Saiprasad G.V.S., 2018. Whole genome resequencing of tobacco (Nicotiana tabacum L.) genotypes and high-throughput SNP discovery. Molecular Breeding, 38: 121.
  92. TRI, 2016, Tobacco Research Institute of the Chinese. Academy of Agricultural Sciences. Bulletin.
  93. Trojak-Goluch A., Berbeć A., 2005. Potential of Nicotiana glauca (Grah.) as a source of resistance to black root rot Thielaviopsis basicola (Berk. and Broome)Ferr. In tobacco improvement. Plant Breeding, 124: 507-510.
  94. Trojak-Goluch A., Kawka-Lipińska M., 2022. Główne alkaloidy tytoniu – charakterystyka, przemiany w roślinie oraz wyzwania dla hodowli roślin. Studia i Raporty IUNG-PIB, 68(22): 129-149, https://doi.org/10.26114/sir.iung.2022.68.07.
  95. Trojak-Goluch A., Laskowska D., Agacka M., Czarnecka D., Kawka M., Czubacka A., 2011. Effectiveness of combining resistance to Thielaviopsis basicola and Tomato spotted wilt virus in haploid tobacco genotypes. Breeding Science, 61(4): 389-393, doi: 10.1270/jsbbs.61.389.
  96. Vontimitta V., Danehower D.A., Steede T., Moon H.S., Lewis R.S., 2010. Analysis of a Nicotiana tabacum L. genomic region controlling two leaf surface chemistry traits. Journal of Agricultural and Food Chemistry, 58: 294-300, doi: 10.1021/jf903256h.
  97. Vontimitta V., Lewis R.S., 2012. Mapping of quantitative trait loci affecting resistance to Phytophthora nicotianae in tobacco (Nicotiana tabacum L.) line Beinhart-1000. Molecular Breeding, 29: 89-98.
  98. Wernsman E.A., 1992. Varied roles for the haploid sporophyte in plant improvement. pp 461-484. In: Plant breeding in the 1990s.; eds: Stalker H.T., Murphy J.P.; Proc Symposium Plant Breed 1990s. CAB Int., Wallingford.
  99. Wylie S., Li H., 2022. Historical and scientific evidence for the origin and cultural importance to Australia’s first-nations people of the laboratory accession of Nicotiana benthamiana, a model for plant virology. Viruses, 14, 771.
  100. Xiao B., Tan Y., Long N., Chen X., Tong Z., Dong Y., Li Y., 2015. SNP-based genetic linkage map of tobacco (Nicotiana tabacum L.) using next-generation RAD sequencing. Journal of Biological Research-Thessaloniki, 22:11.
  101. Xu S., Brockmoller T., Navarro-Quezada A., Kuhl H., Gase K., Ling Z., Zhou W., Kreitzer C., Stanke M., Tang H., Lyons E., Pandey P., Pandey S.P., Timmermann B., Gaquerel E., Baldwin I.T., 2017. Wild tobacco genomes reveal the evolution of nicotine biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 114: 6133-6138, doi: 10.1073/pnas.1700073114.
  102. Yukawa M., Tsudzuki T., Sugiura M., 2006. The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Molecular Genetics and Genomics, 275: 367-373, doi: 10.1007/s00438-005-0092-6.
DOI: https://doi.org/10.26114/pja.iung.521.2023.52.13 | Journal eISSN: 3071-740X | Journal ISSN: 2081-2787
Language: English
Page range: 123 - 135
Submitted on: Oct 13, 2023
Accepted on: Dec 19, 2023
Published on: Mar 12, 2024
Published by: Institute of Soil Science and Plant Cultivation
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Anna Depta, Teresa Doroszewska, published by Institute of Soil Science and Plant Cultivation
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.