References
- AbdelRahman M.A.E., 2023. An overview of land degradation, desertification and sustainable land management using GIS and remote sensing applications. Rendiconti Lincei. Scienze Fisiche e Naturali, doi.org/10.1007/s12210-023-01155-3.
- Al Seadi T., Drosg B., Fuchs W., Rutz D., Janssen R., 2013. Biogas digestate quality and utilization. pp. 267-301. In: The Biogas Handbook. Science, Production and Applications; Wellinger A., Murphy J., Baxter D.; Woodhead Publishing Limited: Oxford/Cambridge, UK; Philadelphia, PA, USA; New Delhi, India.
- Alburquerquea J.A., de la Fuente C., Campoy M., Carrasco L., Nájera I., Baixauli C., Caravaca F., Roldán A., Cegarra J., Bernal M.P., 2012. Agricultural use of digestate for horticultural crop production and improvement of soil properties. The European Journal of Agronomy, 43: 119-128, doi:10.1016/j.eja.2012.06.001.
- Banaszuk P., Wysocka-Czubaszek A., Czubaszek R., Roj-Rojewski S., 2015. Skutki energetycznego wykorzystania biomasy. Wieś i Rolnictwo, 4(169): 139-152.
- Bardgett R.D., Caruso T., 2020. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philosophical Transactions of the Royal Society B, 375: 20190112, doi: 10.1098/rstb.2019.0112.
- Barłóg P., Hlisnikovsk L., Kunzová E., 2020. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy, 10: 379, doi: 10.3390/agronomy10030379.
- Baryga A., Połeć B., Klasa A., 2021. The effects of soil application of digestate enriched with P, K, Mg and B on yield and processing value of sugar beets. Fermentation, 7: 241, doi: 10.3390/fermentation7040241.
- Baştabak B., Koçar G., 2020. A review of the biogas digestate in agricultural framework. Journal of Material Cycles and Waste Management, 22: 1318-1327, doi: 10.1007/s10163-020-01056-9.
- Bede S. Mickan, Ai-Tian Ren, Christopher H. Buhlmann, Anas Ghadouani, Zakaria M. Solaiman, Sasha Jenkins, Jiayin Pang, Megan H. Ryan., 2022. Closing the circle for urban food waste anaerobic digestion: The use of digestate and biochar on plant growth in potting soil. Journal of Cleaner Production, 347: 131071, doi: 10.1016/j. jclepro.2022.131071.
- Béghin-Tanneau R., Guérin F., Guiresse M., Kleiber D., Scheiner J.D., 2019. Carbon sequestration in soil amended with anaerobic digested matter. Soil and Tillage Research, 192: 87-94, doi: 10.1016/j.still.2019.04.024.
- Bertrand J.C., Caumette P., Lebaron P., Matheron R., Normand P., 2011. Microbial ecology: Microbiology of natural and anthropized environments. Presses universitaires de Pau et des Pays de l’Adour, 933 pp., doi: 10.1007/978-94-017-9118-2.
- Burg V., Rolli C., Schnorf V., Scharfy D., Anspach V., Bowman G., 2023. Agricultural biogas plants as a hub to foster circular economy and bioenergy: An assessment using substance and energy flow analysis. Resources, Conservation and Recycling, 190: 106770, doi: 10.1016/j.resconrec.2022.106770.
- Cardelli R., Giussani G., Marchini F., Saviozzi A., 2018. Short-term effects on soil of biogas digestate, biochar and their combinations. Soil Research, 56(6): 623-631, doi:10.1071/SR18017.
- Cavalli D., Corti M., Baronchelli D., Bechini L., Marino Gallina P.M., 2017. CO2 emissions and mineral nitrogen dynamics following application to soil of undigested liquid cattle manure and digestates. Geoderma, 308: 26-35, doi: 10.1016/j.geoderma.2017.08.027.
- Chase J.M., McGill B.J., McGlinn D.J., May F., Blowes S.A., Xiao X., Knight T.M., Purschke O., Gotelli N.J., 2018. Embracing scale-dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology Letters, 21: 1737-1751, doi:10.1111/ele.13151.
- Chen X.D., Dunfield K.E., Fraser T.D., Wakelin S.A., Richardson A.E., Condron L.M., 2020. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Research, 58: 1-20, doi: 10.1071/SR19067.
- Chu H., Lin X., Fujii T., Morimoto S., Yagi K., Hu J., et al., 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry, 39: 2971-2976, doi:10.1016/j.soilbio.2007.05.031.
- Craswell E., Lefroy R., 2001. The role and function of organic matter in tropical soils. Nutrient Cycling in Agroecosystems, 61: 7-18, doi: 10.1023/A:1013656024633.
- Czekała W., Jasiński T., Grzelak M., Witaszek K., Dach J., 2022. Biogas plant operation: digestate as the valuable product. Energies, 15: 8275, doi: 10.3390/en15218275.
- Czekała W., Pilarski K., Dach J., Janczak D., 2012. Analiza możliwości zagospodarowania pofermentu z biogazowni. Technika Rolnicza Ogrodnicza Leśna, 4: 13-15.
- Decaëns T., Jiménez J.J., Gioia C., Measey G.J., Lavelle P., 2006. The values of soil animals for conservation biology. European Journal of Soil Biology, 42: S23-S38, doi:1016/j. ejsobi.2006.07.001.
- Delany-Crowe T., Marinova D., Fisher M., McGreevy M., Baum F., 2019. Australian policies on water management and climate change: are they supporting the sustainable development goals and improved health and well-being? Global Health, 15: 68, doi: 10.1186/s12992-019-0509-3.
- Delgado-Baquerizo M., Reich P.B., Trivedi C., Eldridge D.J., Abades S., Alfaro F.D., et al., 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution, 4: 210-220, doi: 10.1038/s41559-019-1084-y.
- Doran J.W., Zeiss M.R., 2000. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology, 15: 3-11, doi:10.1016/S0929-1393(00)00067-6.
- Doyeni M.O., Barcauskaite K., Buneviciene K., Venslauskas K., Navickas K., Rubezius M., Baksinskaite A., Suproniene S., Tilvikiene V., 2023. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture. Waste Management & Research, 41(3): 701-712, doi: 10.1177/0734242X221123484.
- Estes L., Elsen P.R., Treuer T., Ahmed L., Caylor K., Chang J., Choi J.J., Ellis E.C., 2018. The spatial and temporal domains of modern ecology. Nature Ecology and Evolution, 2: 819-826, doi: 10.1038/s41559-018-0524-4.
- Garg R.N., Pathak H., Das D.K., Tomar R.K., 2005. Use of flyash and biogas slurry for improving wheat yield and physical properties of soil. Environmental Monitoring and Assessment, 107: 1-9, doi: 10.1007/s10661-005-2021-x.
- Gielnik A., Pechaud Y., Huguenot D., Cébron A., Riom J.M., Guibaud G., Esposito G., van Hullebusch E.D., 2019. Effect of digestate application on microbial respiration and bacterial communities’ diversity during bioremediation of weathered petroleum hydrocarbons contaminated soils. Science of the Total Environment, 670: 271-281, doi: 10.1016/j. scitotenv.2019.03.176.
- Gonzales-Lopez J., Martinez Toledo M.V., Reina S., Salmeron V., 1991. Root exudates of maize on production of auxins, gibberellins, cytokinins, amino acid and vitamins by Azotobacter chroococcum chemically defined media and dialysed soil media. Toxicological and Environmental Chemistry, 33: 69-78, doi: 10.1080/02772249109357748.
- Greenberg I., Kaiser M., Gunina A., Ledesma P., Polifka S., Wiedner K., Mueller C.W., Glaser B., Ludwig B., 2019. Substitution of mineral fertilizers with biogas digestate plus biochar increases physically stabilized soil carbon but not crop biomass in a field trial. Science of the Total Environment, 680: 181-189, doi: 10.1016/j.scitotenv.2019.05.051.
- Guo Z., Han J., Li J., Xu Y., Wang X., 2019. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE, 14: e0211163, doi: 10.1371/JOURNAL.PONE.0211163.
- Hermans S.M., Lear G., Case B.S., Buckley H.L., 2023. The soil microbiome: An essential, but neglected, component of regenerative agroecosystems. iScience, 26(2): 106028, doi: 10.1016/j.isci.2023.106028.
- Insam H., Gomez-Brandon M., Ascher J., 2015. Manure-based biogas fermentation residuese Friend or foe of soil fertility? Soil Biology and Biochemistry, 84: 1-14, doi: 10.1016/j.soilbio.2015.02.006.
- Jandl G., Horn R., Schroeder R., Eckhardt K.U., Leinweber P., 2023. Influence of biogas digestates on the composition of soil organic matter. Journal of Energy and Power Technology, 5(1): 1-17, doi: 10.21926/jept.2301012.
- Jha D.K., Sharma G.D., Mishra R.R., 1992. Ecology of soil microflora and mycorrhizal symbionts in degraded forests at two altitudes. Biology and Fertility of Soils, 12: 272-278, doi: 10.1007/BF00336043.
- Johannes A., Matter A., Schulin R., Weisskopf P., Baveye P.C., Boivin P., 2017. Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter? Geoderma, 302: 14-21, doi:10.1016/j.geoderma.2017.04.021.
- Karimi B., Sadet-Bourgeteau S., Cannavacciuolo M. et al., 2022. Impact of biogas digestates on soil microbiota in agriculture: a review. Environmental Chemistry Letters, 20: 3265-3288, doi: 10.1007/s10311-022-01451-8.
- Karlen D.L., Mausbach M.J., Doran J.W., Cline R.G., Harris R.F., Schuman G.E., 1997. Soil quality: A concept, definition, and framework for evaluation. Soil Science Society of America Journal, 61: 4-10, doi: 10.2136/sssaj1997.03615 995006100010001x.
- Koch A.L., 2001. Oligotrophs versus copiotrophs. BioEssays, 23: 657-661, doi: 10.1002/bies.1091.
- Komisja Europejska, 2020. https://state-of-the-union.ec.europa.eu/leading-green-transition.pl (accessed 01.05.2023).
- Kozieł M., 2023. Factors determining the occurrence and number of bacteria of the genus Azotobacter in the soil environment. Polish Journal of Agronomy, doi: 10.26114/pja. iung.503.2023.52.02.
- Kowalczyk-Juśko A., Szymańska M., 2015. Poferment nawozem dla rolnictwa. Wyd. Fundacja na rzecz Rozwoju Polskiego Rolnictwa, Warszawa.
- Lal R., 2004. Soil carbon sequestration impacts on global climate change and food security. Science, 304: 1623-1627, doi: 10.1126/science.1097396.
- Li L., Xu M., Eyakub Ali M., Zhang W., Duan Y., Li D., 2018. Factors affecting soil microbial biomass and functional diversity with the application of organic amendments in three contrasting cropland soils during a field experiment. PLoS ONE, 13: e0203812, doi: 10.1371/journal.pone.0203812.
- Logan M., Visvanathan C., 2019. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Management & Research, 37 (Suppl. S1): 27-39, doi: 10.1177/0734242X18816793.
- Lorenz K., Lal R., Preston C.M., Nierop K.G., 2007. Strengthening the soil organic carbon pool by increasing contribution from recalcitrant aliphatic bio (macro) molecules. Geoderma, 142: 1-10, doi: 10.1016/j.geoderma.2007.07.013.
- Luo L., Ma Y., Zhang S., Wei D., Zhu Y.G., 2009. Aninven-tory of trace element inputs to agricultural soils in China. Journal of Environmental Management, 90: 2524-2530.
- Makdi M., Tomcsik A., Orosz V., 2012. Digestate: A new nutrient source – Review. Biogas, 14: 295-312, doi: 10.5772/31355.
- Maron P.A, Sarr A., Kaisermann A., Lévêque J., Mathieu O., Guigue J., Karimi B., Bernard L., Dequiedt S., Terrat S., Chabbi A., Ranjard L., 2018. High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology, 84: e02738-e2817. doi: 10.1128/AEM.02738-17.
- Martyniuk S., 2008. Znaczenie procesu biologicznego wiązania azotu atmosferycznego w rolnictwie ekologicznym. Journal of Research and Applications in Agricultural Engineering, 53: 9-14.
- Martyniuk S., Martyniuk M., 2003. Occurrence of Azotobacter spp., in some Polish soils. Polish Journal of Environmental Studies, 12: 371-374.
- Mercado-Blanco J., Abrantes I., Barra Caracciolo A., Bevivino A., Ciancio A., Grenni P., Hrynkiewicz K., Kredics L., Proença D.N., 2018. Belowground microbiota and the health of tree crops. Frontiers in Microbiology, 9: 1006, doi: 10.3389/fmicb.2018.01006.
- Ministerstwo Aktywów Państwowych. 2019. Krajowy planu na rzecz energii i klimatu na lata 2021-2030. Wersja 4.1 z dn. 18.12.2019, https://www.gov.pl/web/klimat/krajowy--plan-na-rzecz-energii-i-klimatu.
- Möller K., 2015. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agronomy for Sustainable Development, 35: 1021-1041, doi: 10.1007/s13593-015-0284-3.
- Nabel M., Schrey S.D., Poorter H., Koller R., Jablonowski A.D., 2017. Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass fields on marginal soils by increasing soil fertility. Biomass and Bioenergy, 107: 207-213, doi: 10.1016/j.biombioe.2017.10.009.
- Nannipieri P., Aschner J., Ceccherini M.T., Landi L., Pietramellara G., Renella G., Valori F., 2007. Microbial diversity and microbial activity in the rhizosphere. Ciencia del Suelo, 25: 89-97.
- Nielsen K., Roß Ch.L., Hoffmann M., Muskolus A., Ellmer F., Kautz T., 2020. The chemical composition of biogas digestates determines their effect on soil microbial activity. Agriculture, 10: 244, doi: 10.3390/agriculture10060244.
- Nilsson M., Griggs D., Visbec M., 2016. Policy: Map the interactions between Sustainable Development Goals. Nature, 534: 320-322, doi: 10.1038/534320a.
- Nkoa R., 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agronomy for Sustainable Development, 34: 473-492, doi: 10.1007/s13593-013-0196-z.
- Odlare M., Arthurson V., Pell M., Svensson K., Nehrenheim E., Abubaker J., 2011. Land application of organic waste – Effects on the soil ecosystem. Applied Energy, 88: 2210-2218, doi: 10.1016/j.apenergy.2010.12.043.
- Odlare M., Pell M., Svensson K., 2008. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Management, 28: 1246-1253, doi: 10.1016/j.wasman.2007.06.005.
- Parastesh F., Alikhani H.A., Etesami H., 2019. Vermicom-post enriched with phosphate–solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions. Journal of Cleaner Production, 221: 27-37, doi: 10.1016/j.jclepro.2019.02.234.
- Paśmionka I., 2017. Mikrobiologiczne przemiany azotu glebowego. Kosmos. Problemy Nauk Biologicznych, 66(2): 185-192.
- Pastorelli R., Valboa G., Lagomarsino A., Fabiani A., Simoncini S., Zaghi M., Vignozzi N., 2021. Recycling biogas digestate from energy crops: Effects on soil properties and crop productivity. Applied Sciences, 11: 750, doi:10.3390/app11020750.
- Paz-Ferreiro J., Fu S., 2016. Biological indices for soil quality evaluation: Perspectives and limitations. Land Degradation & Development, 27: 14-25, doi: 10.1002/ldr.2262.
- Reeves D.W., 1997. The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soil and Tillage Research, 43: 131-167, doi:10.1016/S0167-1987(97)00038-X.
- Ren A.T., Abbott L.K., Chen Y., et al., 2020. Nutrient recovery from anaerobic digestion of food waste: impacts of digestate on plant growth and rhizosphere bacterial community composition and potential function in ryegrass. Biology and Fertility of Soils, 56: 973-989, doi: 10.1007/s00374-020-01477-6.
- Report E.E.A., 2012. Climate change, impacts and vulnerability in Europe 2012. https://op.europa.eu/en/publication-detail/-/publication/c42b2390-451f-475c-b0a4-7ff14aeaee45/language-en (accessed 01.05.2023).
- Scarlat N., Dallemand J.F., Fahl F., 2018. Biogas: Developments and perspectives in Europe. Renewable Energy, 129: 457-472, doi: 10.1016/j.renene.2018.03.006.
- Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kögel-Knabner I., Lehmann J., Mannin, D.A.C., 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478: 49-56, doi: 10.1038/nature10386.
- Siebielec G., Siebielec S., Lipski D., 2018. Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. Journal of Cleaner Production, 18: 372-379, doi: 10.1016/j.jclepro.2018.03.245.
- Siebielec S., Siebielec G., Klimkowicz-Pawlas A., Gałązka A., Grządziel J., Stuczyński T., 2020. Impact of water stress on microbial community and activity in sandy and loamy soils. Agronomy, 10(9): 1429, doi: 10.3390/agronomy10091429.
- Simon T., Kunzová E., Friedlová M., 2015. The effect of digestate, cattle slurry and mineral fertilization on the winter wheat yield and soil quality parameters. Plant Soil Environment, 61: 522-527, doi: 10.17221/530/2015-PSE.
- Singh J.S., Gupta V.K., 2018. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Science of the Total Environment, 634: 497-500, doi: 10.1016/j. scitotenv.2018.03.373.
- Six J., Bossuyt H., Degryze S., Denef K., 2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79: 7-31, doi: 10.1016/j.still.2004.03.008.
- Stavi I., Bel G., Zaady E., 2016. Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agronomy for sustainable development, 36: 1-12, doi: 10.1007/s13593-016-0368-8.
- Stefaniuk M., Bartminski P., Różyło K., Dębicki R., Oleszczuk P., 2015. Ecotoxicological assessment of residues from different biogas production plants used as fertiliser for soil. Journal of Hazardous Materials, 298: 195-202, doi: 10.1016/j.jhazmat.2015.05.026.
- Strock J.S., 2008. Ammonification. pp. 162-165. In: Encyclopedia of Ecology, Elsevier Inc., doi: 10.1016/B978-008045405-4.00256-1.
- Suproniene S., Doyeni M.O., Viti C., Tilvikiene V., Pini F., 2022. Characterization of the soil prokaryotic community with respect to time and fertilization with animal waste– based digestate in a humid continental climate. Frontiers in Environmental Sciences, 10: 852241, doi: 10.3389/fenvs.2022.852241.
- Tampio E., Marttinen S., Rintala J., 2016a. Liquid fertilizer products from anaerobic digestion of food waste: mass, nutrient and energy balance of four digestate liquid treatment systems. Journal of Cleaner Production, 125: 22-32, doi: 10.1016/j.jclepro.2016.03.127.
- Tampio E., Salo T., Rintala J., 2016b. Agronomic characteristics of five different urban waste digestates. Journal of environmental management, 169: 293-302, doi: 10.1016/j. jenvman.2016.01.001.
- Tanveer M., Anjum S.A., Hussain S., Cerdà A., Ashraf U., 2017. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production. Environmental Science and Pollution Research, 24(8): 6973-6988, doi: 10.1007/s11356-017-8371-4.
- Thiele-Bruhn S., Bloem J., de Vries F.T., Kalbitz K., Wagg C., 2012. Linking soil biodiversity and agricultural soil management. Current Opinion in Environmental Sustainability, 4: 523-528, doi: 10.1016/j.cosust.2012.06.004.
- Tibbett M., Fraser T.D., Duddigan S., 2020. Identifying potential threats to soil biodiversity. PeerJ, 8: e9271, doi: 10.7717/peerj.9271.
- Westphal A., Kücke M., Heuer H., 2016. Soil amendment with digestate from bio- energy fermenters for mitigating damage to Beta vulgaris subspp. by Heterodera schachtii. Applied Soil Ecology, 99: 129-136, doi:10.1016/j.ap-soil.2015.11.019.
- Widawati S., Latupapua S.H.J.D., Sugiharto A., 2005. Bio-diversity of soil microbes from rhizosphere at Wamena Biological Garden (WBiG), Jayawijaya, Papua. Bio Diveritas, 6: 6-11, doi: 10.13057/biodiv/d060102.
- Yan M., Tian H., Song S., Tan H.T.W., Lee J.T.E., Zhang J., Sharma P., Tiong Y.W., Tong Y.W., 2023. Effects of digestate-encapsulated biochar on plant growth, soil microbiome and nitrogen leaching. Journal of Environmental Management, 334: 117481, doi: 10.1016/j.jenvman.2023.117481.
- Young I.M., Ritz K., 2000. Tillage, habitat space and function of soil microbes. Soil and Tillage Research, 53(3): 201-213, doi: 10.1016/S0167-1987(99)00106-3.
- Yu L.Y., Huang H.B., Wang X.H., Li S., Feng N.X., Zhao H.M., 2019. Novel phosphate-solubilising bacteria isolated from sewage sludge and the mechanism of phosphate solubilisation. Science of the Total Environment, 658: 474-484, doi: 10.1016/j.scitotenv.2018.12.166.
- Zhang T., Hu F., Ma L., 2019. Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth. Open Life Science, 14: 246-254, doi: 10.1515/biol-2019-0028.