Have a personal or library account? Click to login
A-KA Model: an Optimization of the Stock’s Portofolio Cover
Open Access
|Dec 2020

References

  1. Aggarwal, R., Rao R.P. & Hiraki T. (1989). Skewness and kurtosis in Japanese equity returns: empirical evidence. The Journal of Financial Research. 12(3), 253-260. DOI: 10.1111/j.1475-6803.1989. tb00518.x.
  2. Artzner, P., Delbaen F., Eber J.-M. & Heath D. (1999). Coherent Measures of Risk. Mathematical Finance. 9(3), 203-228. DOI: 10.1111/1467-9965.00068. Retrieved February 3, 2011.10.1111/1467-9965.00068
  3. Cantelli, F. P. (1933). Sulla determinazione empirica delle leggi di probabilità. Giornale Istituto Italiano Attuari. 4, 221-424.
  4. Cavenaile, L. & Lejenne T. (2012). A Note on the Use of the Modified Value-at-Risk. Journal of Alternative Investments, Forthcoming. 14(4), 79-83. DOI: 10.3905/jai.2012.14.4.079. Last revised 3 feb. 2016.10.3905/jai.2012.14.4.079
  5. Chong, J. & Phillips M. G. (2011). Measuring risk for cost of capital: The downside beta approach. Journal of Corporate Treasury Management. 4(4), 344-352. Retrieved 26 June 2013.
  6. Christoffersen, P. & Pelletier D. (2004). Backtesting Value-at-Risk: A Duration-Based Approach. Journal of Financial Econometrics. 2(1), 84-108. DOI: 10.1093/jjfinec/nbh004.10.1093/jjfinec/nbh004
  7. Fama, E.F. & French K.R. (1996). Multifactor Explanations of Asset Pricing Anomalies. Journal of Finance. 51(1), 55-84. DOI: 10.1111/j.1540-6261.1996.tb05202.x.10.1111/j.1540-6261.1996.tb05202.x
  8. Fama, E.F. & MacBeth, J.D. (1973). Risk, Return and Equilibrium: Empirical Tests. Journal of Political Economy. 81(3), 607-636. DOI: 10.1086/260061.10.1086/260061
  9. Glivenko, V. (1933). Sulla determinazione empirica della legge di probabilità. Giornale Istituto Italiano Attuari. 4, 92-99.
  10. Glivenko, V., (1933): Sulla determinazione empirica della legge di probabilità, Giornale Istituto Italiano Attuari,4, 92-99.
  11. Jaschke, S.R. (2002). The Cornish-Fisher-Expansion in the Context of Delta-Gamma-Normal Approximations. The Journal of Risk. 4(4), 33-52. DOI: 10.21314/JOR.2002.068.10.21314/JOR.2002.068
  12. Konno, H. & Yamazaki H. (1991). Mean-absolute deviation portfolio optimization model and its application to Tokyo Stock Market. Management Science. 37(5), 519-531. DOI: 10.1287/mnsc.37.5.519.10.1287/mnsc.37.5.519
  13. Konno, H. & Suzuki K.-I. (1995). A mean-variance-skewness portfolio optimization model. Journal of the Operations Research Society of Japan. 38 (2), 173-187. DOI: 10.15807/jorsj.38.17310.15807/jorsj.38.173
  14. Lo Andrew, W. (2002). The Statistics of Sharpe Ratios. Financial Analysts Journal. 58(4), 36-52. DOI: 10.2469/faj.v58.n4.2453.10.2469/faj.v58.n4.2453
  15. Maghrebi, N. (1992). On skewness preference and persistence hypothesis. Japan Financial Review. 15, 17-35. DOI: R000000004-I3472569-00
  16. Markowitz, H.M. (1952). Portfolio selection. Journal of Finance. 7(1), 77-91. DOI: 10.1111/j.1540-6261.1952.tb01525.x10.1111/j.1540-6261.1952.tb01525.x
  17. Markowitz, H.M. (1991). Portfolio Selection (2nd edition). Malden Massachusetts: Blackwell.
  18. Markowitz, H.M., Todd P., Xu G. & Yamane Y. (1993). Computation of mean-semivariance efficient sets by the critical line algorithm. Annals of Operations Research. 45(1), 307-317. DOI: 10.1007/BF02282055.10.1007/BF02282055
  19. Moors, J.J. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society. Series D The Statistician. 37(1), 25-32. DOI: 10.2307/2348376.10.2307/2348376
  20. Papahristodoulou, C. & Dotzauer E. (2004). Optimal Portfolios Using Linear Programming Models. The Journal of the Operational Research Society. 55(11), 1169-1177. DOI: 10.1057/palgrave. jors.2601765.
  21. Roll, R. (1977). A Critique of the Asset’s Pricing Theory’s Tests: Part I. Journal of Financial Economics. 4(2), 129-176. DOI: 10.1016/0304-405X(77)90009-5.10.1016/0304-405X(77)90009-5
  22. Ross, S.A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory. 13(3), 341-360. DOI: 10.1016/0022-0531(76)90046-6.10.1016/0022-0531(76)90046-6
  23. Ryoo, H.S. (2007). A compact mean-variance-skewness model for large scale portfolio optimization and its application to the NYSE market. Journal of the Operational Research Society. 58(4), 505-515. DOI: 10.1057/palgrave.jors.2602168.10.1057/palgrave.jors.2602168
  24. Sharpe, W.F. (1964). Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. The Journal of Finance. 19(3), 425-442. DOI: 10.2307/2977928.10.2307/2977928
  25. Škrinjarić, T. (2013). Portfolio Selection with Higher Moments and Application on Zagreb Stock Exchange. Zagreb International Review of Economics & Business. 16(1), 65-78. DOI: https://hrcak.srce.hr/102022.
  26. Sortino, F. A. & Stephen S. (2001). Managing Downside Risk in Financial Markets: Theory, Practice and Implementation. Butterworth-Heinemanne: Elsevier Ltd.
  27. Sura, P. & Perron M. (2010). Extreme Events and the General Circulation: Observations and Stochastic Model Dynamics. American Meteorological Society. Journals online https://doi.org/10.1175/2010JAS3369.1.10.1175/2010JAS3369.1
  28. Varadhan, R. (2012). Package “ALABAMA”; R Reference Manual; Johns Hopkins University School of Medicine, Baltimore, Maryland.
DOI: https://doi.org/10.2478/zireb-2020-0012 | Journal eISSN: 1849-1162 | Journal ISSN: 1331-5609
Language: English
Page range: 21 - 40
Published on: Dec 12, 2020
Published by: University of Zagreb, Faculty of Economics & Business
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Filippo Regina, Mauro Gianfranco Bisceglia, published by University of Zagreb, Faculty of Economics & Business
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.