Have a personal or library account? Click to login
Machine learning model development for predicting road transport GHG emissions in Canada Cover

Machine learning model development for predicting road transport GHG emissions in Canada

Open Access
|Dec 2019

References

  1. Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-14010.1007/BF00058655
  2. Carletta, J. (1996). Assessing agreement on classification tasks: the kappa statistic. Computational linguistics, 22(2), 249-254.
  3. Dawson, C. W., & Wilby, R. (1998). An artificial neural network approach to rainfall-runoff modelling. Hydrological Sciences Journal, 43(1), 47-66.10.1080/02626669809492102
  4. Dietterich, T. G. (2000, June). Ensemble methods in machine learning. In International workshop on multiple classifier systems (pp. 1-15). Springer Berlin Heidelberg.10.1007/3-540-45014-9_1
  5. Environment and Climate Change Canada - Environmental Indicators - Greenhouse Gas Emissions. Retrieved May 29, 2017, from http://www.ec.gc.ca/indicateurs-indicators/default.asp?lang=En&n=FBF8455E-1
  6. Freund, Y., & Schapire, R. E. (1996, July). Experiments with a new boosting algorithm. In ICML (Vol. 96, pp. 148-156).
  7. Government of Canada, Environment and Climate Change Canada. (2017, April 13).
  8. Hosmer, D. W., & Lemeshow, S. (2000). Special topics. Applied Logistic Regression, Second Edition, 260-351.10.1002/0471722146.ch8
  9. Hosmer Jr, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). John Wiley & Sons.10.1002/9781118548387
  10. Hssina, B., Merbouha, A., Ezzikouri, H., & Erritali, M. (2014).A comparative study of decision tree ID3 and C4. 5. International Journal of Advanced Computer Science and Applications, 4(2), 13-19.10.14569/SpecialIssue.2014.040203
  11. Lang, H. (2013). Topics on Applied Mathematical Statistics. KTH Teknikvetenskap, version 0.97.
  12. S Lek Y S Park. (2008). Encyclopedia of Ecology | Multilayer Perceptron. Retrieved July 10, 201710.1016/B978-008045405-4.00162-2
  13. Mashaly, A. F., & Alazba, A. A. (2016). MLP and MLR models for instantaneous thermal efficiency prediction of solar still under hyper-arid environment. Computers and Electronics in Agriculture, 122, 146-155.10.1016/j.compag.2016.01.030
  14. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.10.1007/BF02478259
  15. de Menezes, F. S., Liska, G. R., Cirillo, M. A., & Vivanco, M. J. (2017). Data classification with binary response through the Boosting algorithm and logistic regression. Expert Systems with Applications, 69, 62-73.10.1016/j.eswa.2016.08.014
  16. Metz, B., Davidson, O. R., Bosch, P. R., & Dave, R. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007
  17. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Let a biogeography-based optimizer train your multi-layer perceptron. Information Sciences, 269, 188-209.10.1016/j.ins.2014.01.038
  18. Opitz, D. W., & Maclin, R. (1999). Popular ensemble methods: An empirical study. J. Artif. Intell. Res.(JAIR), 11, 169-198.10.1613/jair.614
  19. Quinlan, J. R. (1993). C4. 5: Programming for machine learning. Morgan Kauffmann, 38.
  20. Peng, C. Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis and reporting. The journal of educational research, 96(1), 3-14.10.1080/00220670209598786
  21. Sasaki, Y. (2007). The truth of the F-measure. Teach Tutor mater, 1(5).
  22. Sayad, S. (2011). Real time data mining. Canada: Self-Help Publishers.
  23. Shardlow, M. (2016). An analysis of feature selection techniques. The University of Manchester.
  24. Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Fam Med, 37(5), 360-363.15883903
  25. Wattimena, R. K. (2014). Predicting the stability of hard rock pillars using multinomial logistic regression. International journal of rock mechanics and mining sciences, 71, 33-40.10.1016/j.ijrmms.2014.03.015
  26. Werbos, P. J. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. Doctoral Dissertation, Applied Mathematics, Harvard University, MA.
  27. Winiwarter, W., & Rypdal, K. (2001). Assessing the uncertainty associated with national greenhouse gas emission inventories:: a case study for Austria. Atmospheric environment, 35(32), 5425-544010.1016/S1352-2310(01)00171-6
  28. Zhou, Z. H. (2012). Ensemble methods: foundations and algorithms. CRC press.10.1201/b12207
  29. Yan, X., & Su, X. (2009). Linear regression analysis: theory and computing. World Scientific10.1142/6986
Language: English
Page range: 55 - 72
Published on: Dec 31, 2019
Published by: WSB Merito University in Gdansk
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Mohd Jawad Ur Rehman Khan, Anjali Awasthi, published by WSB Merito University in Gdansk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.