Have a personal or library account? Click to login
Sharp Maximal Function Estimates and Boundedness for Commutator Related to Generalized Fractional Integral Operator Cover

Sharp Maximal Function Estimates and Boundedness for Commutator Related to Generalized Fractional Integral Operator

Open Access
|Jan 2013

References

  1. 1. D. C. Chang, J. F. Li, and J. Xiao, Weighted scale estimates for Calderon- Zygmund type operators, Contemporary Mathematics, 446, (2007), 61-70.10.1090/conm/445/08593
  2. 2. S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31, (1982), 7-16.10.1512/iumj.1982.31.31002
  3. 3. W. G. Chen, Besov estimates for a class of multilinear singular integrals, Acta Math. Sinica, 16, (2000), 613-626.10.1007/s101140000059
  4. 4. F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat., 7, (1987), 273-279.
  5. 5. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc., 79, (1980), 249-254.10.1090/S0002-9939-1980-0565349-8
  6. 6. R. R. Coifman, R. Rochberg, and G. Weiss, Fractorization theorems for Hardy spaces in several variables, Ann. of Math., 103, (1976), 611-635.10.2307/1970954
  7. 7. G. Di FaZio and M. A. Ragusa, Commutators and Morrey spaces, Boll. Un. Mat. Ital., 5-A(7), (1991), 323-332.
  8. 8. G. Di Fazio and M. A. Ragusa, Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients, J. Func. Anal., 112, (1993), 241-256.10.1006/jfan.1993.1032
  9. 9. J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math., Amsterdam, 16, 1985.
  10. 10. S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math., 16, (1978), 263-270.10.1007/BF02386000
  11. 11. Y. Lin, Sharp maximal function estimates for Calderon-Zygmund type operators and commutators, Acta Math. Scientia, 31(A), (2011), 206-215.
  12. 12. L. Z. Liu, Interior estimates in Morrey spaces for solutions of elliptic equations and weighted boundedness for commutators of singular integral operators, Acta Math. Scientia, 25(B),(1), (2005), 89-94.10.1016/S0252-9602(17)30264-3
  13. 13. L. Z. Liu, The continuity of commutators on Triebel-Lizorkin spaces, Integral Equations and Operator Theory, 49, (2004), 65-76.10.1007/s00020-002-1186-8
  14. 14. L. Z. Liu, Triebel-Lizorkin space estimates for multilinear operators of sublinear operators, Proc. Indian Acad. Sci. (Math. Sci), 113, (2003), 379-393.10.1007/BF02829632
  15. 15. L. Z. Liu, Boundedness for multilinear Littlewood-Paley operators on Triebel- Lizorkin spaces, Methods and Applications of Analysis, 10(4), (2004), 603-614.10.4310/MAA.2003.v10.n4.a7
  16. 16. S. Z. Lu, Four lectures on real Hpspaces, World Scientific, River Edge, NI, 1995.
  17. 17. T. Mizuhara, Boundedness of some classical operators on generalized Morrey spaces, ”Harmonic Analysis”, Proceedings of a conference held in Sendai, (1990), 183-189.10.1007/978-4-431-68168-7_16
  18. 18. B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integral, Trans. Amer. Math. Soc., 192, (1974), 261-274.10.1090/S0002-9947-1974-0340523-6
  19. 19. M. Paluszynski, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, 44, (1995), 1-17.10.1512/iumj.1995.44.1976
  20. 20. J. Peetre, On convolution operators leaving Lp,A-spaces invariant, Ann. Mat. Pura.Appl., 72, (1966), 295-304.10.1007/BF02414340
  21. 21. J. Peetre, On the theory of Lp,A-spaces, J. Func. Anal., 4, (1969), 71-87.10.1016/0022-1236(69)90022-6
  22. 22. C. Perez, Endpoint estimate for commutators of singular integral operators, J. Func.Anal., 128, (1995), 163-185.10.1006/jfan.1995.1027
  23. 23. C. Perez and R. Trujillo-Gonzalez, Sharp weighted estimates for multilinear commutators, J. London Math. Soc., 65, (2002), 672-692.10.1112/S0024610702003174
  24. 24. E. M. Stein, Harmonic analysis: real variable methods, orthogonality and oscillatory integrals, Princeton Univ. Press, Princeton NJ, 1993.
  25. 25. A. Torchinsky, Real variable methods in harmonic analysis, Pure and Applied Math. 123, Academic Press, New York, 1986.
  26. 26. A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral, Colloq. Math., 60/61, (1990), 235-243. 10.4064/cm-60-61-1-235-243
DOI: https://doi.org/10.2478/v10324-012-0018-z | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 97 - 115
Published on: Jan 15, 2013
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2013 Guo Sheng, Huang Chuangxia, Liu Lanzhe, published by West University of Timisoara
This work is licensed under the Creative Commons License.