Have a personal or library account? Click to login
On The Ψ – Asymptotic Stability Of Nonlinear Lyapunov Matrix Differential Equations Cover

On The Ψ – Asymptotic Stability Of Nonlinear Lyapunov Matrix Differential Equations

Open Access
|Nov 2012

References

  1. [1] R. Bellman, Introduction to Matrix Analysis, McGraw-Hill Book Company, Inc. New York (translated in Romanian), 1960.
  2. [2] L. Cesari, Un nuovo criterio di stabilita per le soluzioni delle equazioni differenziali lineari, Ann. Scuola Norm. Sup. Pisa, 2, 9, (1940), 163 - 186.
  3. [3] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965.
  4. [4] A. Diamandescu, On the Ψ Asymptotic Stability of a Nonlinear Volterra Integro-Differential System, Bull. Math. Soc. Sc. Math., Tome 46(94) No. 1 - 2, (2003), 39 - 60.
  5. [5] A. Diamandescu, Y - bounded solutions for a Lyapunov matrix differential equation, Electronic Journal of Qualitative Theory of Differential Equations, No. 17, 1 -11. URL: http://www.math.u-szeged.hu/ejqtde/, (2009.)10.14232/ejqtde.2009.1.17
  6. [6] A. Diamandescu, On Ψ stability of nonlinear Lyapunov matrix differential equations, Electronic Journal of Qualitative Theory of Differential Equations, No. 54, 1 - 18. URL: http://www.math.u-szeged.hu/ejqtde/, (2009)10.14232/ejqtde.2009.1.54
  7. [7] J. L. Massera and J. J. Sch¨affer, Linear differential equations and functional analysis, I, Ann. of math. 67, (1958), 517 - 573.10.2307/1969871
  8. [8] M. S. N. Murty and B. V. Apparao, On two point boundary value problems for ˙X = AX + XB, Ultra Science, 16(2)M, (2004), 223 - 227.
  9. [9] M. S. N. Murty and B. V. Apparao, Two point boundary value problems for matrix differential equations, Journal of the Indian Math. Soc., Vol. 73, Nos. 1-2, (2006), 1-7.10.1155/BVP/2006/83910
  10. [10] M. S. N. Murty and B. V. Apparao, Kronecker product boundary value problems - existence and uniqueness, Journal of Indian Acad. Mathematics, 25, No. 2, (2003), 383 - 394.
  11. [11] M. S. N. Murty, B. V. Apparao, and G. Suresh Kumar, Controllability, observability and realizability of matrix Lyapunov systems, Bull. Korean Math. Soc., 43, No. 1, (2006), 149 - 159.10.4134/BKMS.2006.43.1.149
  12. [12] K. N. Murty, K. R. Prasad, and P. V. S. Anand, Two point boundary value problem associated with Lyapunov type matrix difference system, Dyn. Syst. and Appl., 4, (1995), 205 - 214.
  13. [13] M. S. N. Murty and G. Suresh Kumar, On Ψboundedness and stability of matrix Lyapunov systems, J. Appl. Math. Comput, 26: 67 - 84, (2008.)10.1007/s12190-007-0007-2
  14. [14] M. S. N. Murty and G. Suresh Kumar, On dichotomy and conditioning for two-point boundary value problems associated with first order matrix Lyapunov systems, J. Korean Math. Soc., 45, No. 5, (2008), 1361 - 1378.10.4134/JKMS.2008.45.5.1361
  15. [15] O. Perron, Die Stabilit¨atsfrage bei Differentialgleichungen, Math. Z., 32, 703 - 728., (1930.)10.1007/BF01194662
DOI: https://doi.org/10.2478/v10324-012-0001-8 | Journal eISSN: 1841-3307 | Journal ISSN: 1841-3293
Language: English
Page range: 3 - 24
Published on: Nov 22, 2012
Published by: West University of Timisoara
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2012 Aurel Diamandescu, published by West University of Timisoara
This work is licensed under the Creative Commons License.