Have a personal or library account? Click to login
On Hopf-Galois extensions of linear categories Cover

References

  1. [1] J. Bergen and S. Montgomery, Smash products and outer derivations, Israel J. Math. 53 (1986), no. 3, 321-345.
  2. [2] R. J. Blattner and S. Montgomery, Crossed products and Galois exten-sions of Hopf algebras, Pacific J. Math. 137 (1989), no. 1, 37-54.
  3. [3] C. Cibils and A. Solotar, Galois coverings, Morita equivalence and smashextensions of categories over a field, Doc. Math. 11 (2006), 143-159.
  4. [4] M. Cohen, D.Fischman and S. Montgomery, Hopf Galois extensions,smash products, and Morita equivalence, J. Algebra 133 (1990), no. 2, 351-372.
  5. [5] M. Cohen and S. Montgomery, Group-graded rings, smash products, andgroup actions, Trans. Amer. Math. Soc. 282 (1984), 237-258.10.1090/S0002-9947-1984-0728711-4
  6. [6] S. D˘asc˘alescu, C. N˘ast˘asescu and S,. Raianu, Hopf algebras. An introduc-tion, Monographs and Textbooks in Pure and Applied Mathematics, vol. 235, Marcel Dekker Inc., New York, 2001.
  7. [7] E. Herscovich and A. Solotar, Hochschild-Mitchell Cohomology and GaloisExtensions, J. Pure Appl. Algebra 209 (2007), no. 1, 37-55.
  8. [8] E. Herscovich and A. Solotar, Derived invariance of Hochschild-Mitchell(co)homology and one-point extensions, J. Algebra 315 (2007), no. 2, 852-873.
  9. [9] H. Kreimer and M. Takeuchi, Hopf algebras and Galois extensions of analgebra, Indiana Univ. Math J. 30 (1981), 675-692.10.1512/iumj.1981.30.30052
  10. [10] B. Mitchell, Rings with several objects, Advances in Math. 8 (1972), 1-161.10.1016/0001-8708(72)90002-3
  11. [11] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993.10.1090/cbms/082
  12. [12] Y. Nakagami and M. Takesaki, Duality for crossed products of Von New-mann algebras, Lecture Notes in Mathematics, vol. 731 (1979), Springer, Berlin, 1979.10.1007/BFb0069742
  13. [13] H.-J. Schneider, Normal basis and transitivity of crossed products for Hopfalgebras, J. Algebra 152 (1992), no. 2, 289-312.
  14. [14] A. St˘anescu and D. S,tefan, Cleft comodule categories, to appear in Comm. Algebra.
DOI: https://doi.org/10.2478/v10309-012-0059-7 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 111 - 130
Published on: May 21, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Anca Stănescu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.