Have a personal or library account? Click to login
Spacetimes with singularities Cover

References

  1. [1] A. Ashtekar. Non-perturbative canonical gravity, Lecture notes in collab- oration with R. S. Tate. World Scientific, Singapore, 1991.10.1142/1321
  2. [2] A. Ashtckar. Singularity Resolution in Loop Quantum Cosmology: A Brief Overview. J. Phys. Conf. Ser., 189:012003, 2009.
  3. [3] A. Ashtekar and E. Wilson-Ewing. Loop quantum cosmology of Bianchi ’ I models. Phys. Rev.. D79:083535, 2009.10.1103/PhysRevD.79.083535
  4. [4] A. Bejancu and K.L. Duggal. Lightlike submanifolds of Semi-Ricmannian manifolds. Acta Appi. Math., 38(2):197-215, 1995.10.1007/BF00992847
  5. [5] R .H. Boyer and R.W. Lindquist. Maximal analytic extension of the Kerr metric. Journal of mathematical physics, 8:265, 1967.10.1063/1.1705193
  6. [6] D. Christodoulou. The Formation of Black Holes in General Relativity, volume 4. European Mathematical Society, 2009.10.4171/068
  7. [7] T.A. Driscoll and L.N. Trefethen. Schwarz-Christoffel Mapping, volume 8. Cambridge Univ. Pr., 2002.10.1017/CBO9780511546808
  8. [8] A. Einstein and N. Rosen. The Particle Problem in the General Theory of Relativity. Phys. Rev., 48(1):73, 1935.10.1103/PhysRev.48.73
  9. [9] S. Hawking. The occurrence of singularities in cosmology, iii. causality and singularities.! Pwc- R°V- S°c- London Ser. A, (300):187-201, 1967.10.1098/rspa.1967.0164
  10. [10] S. Hawking. Particle Creation by Black Holes. Comm. Math. Phys., (33):323, 1973.10.1007/BF01646744
  11. [11] S. Hawking. Breakdown of Predictability in Gravitational Collapse. Phys. Rev. D, (14):2460, 1976.10.1103/PhysRevD.14.2460
  12. [12] S. Hawking and G. Ellis. The Large Scale Structure of Space Time. Cam- bridge University Press, 1995.
  13. [13] S. Hawking and R. Penrose. The singularities of gravitational collapse and cosmology. Proc. Roy. Soc. London Ser. A, (314):529-548, 1970.10.1098/rspa.1970.0021
  14. [14] S. Hawking and R. Penrose. The Nature of Space and Time. Princeton University Press, 1996.10.1038/scientificamerican0796-60
  15. [15] S. Klainerman and I. Rodnianski. On the formation of trapped surfaces. Arxiv preprint arXiv:0912.5097, 2009.
  16. [16] D. Kupeli. Degenerate Manifolds. Geom. Dedicata, 23(3):259-290, 1987.10.1007/BF00181313
  17. [17] D. Kupeli. Degenerate submanifolds in Semi-Riemannian geometry. Geom. Dedicata, 24(3):337-361, 1987.10.1007/BF00181606
  18. [18] D. Kupeli. On Null Submanifolds in Spacetimes. Geom. Dedicata, 23(1):33-51, 1987.10.1007/BF00147389
  19. [19] D. Kupeli. Singular semi-Riemannian geometry. Kluwer Academic Pub- lishers Group, 1996.10.1007/978-94-015-8761-7
  20. [20] B. O’Neill. Semi-Riemannian Geometry with Applications to Relativity. Pure Appi. Math., (103):468, 1983.
  21. [21] A. Pambira. Harmonic morphisms between degenerate semi-riemannian manifolds. Contributions to Algebra and Geometry, 46(1):261-281, 2005.
  22. [22] R. Penrose. Gravitational collapse and space-time singularities. Phys. Rev. Lett., (14):57-59, 1965.10.1103/PhysRevLett.14.57
  23. [23] R. Penrose and W. Rindler. Spinors and Space-Time: Volume 1, Two- Spinor Calculus and Relativistic Fields (Cambridge Monographs on Math- ematical Physics). Cambridge University Press, 1987.
  24. [24] C. Stoica. On Singular Semi-Riemannian Manifolds. arXiv.math.DG /1105.0201, May 2011.
  25. [25] C. Stoica. Warped Products of Singular Semi-Riemannian Manifolds. arXiv.math.DG /1105.3404, May 2011.
  26. [26] C. Stoica. The Cauchy Data in Spacetimes With Singularities. arXiv.math.DG /1108.5099, August 2011.
  27. [27] C. Stoica. Cartan’s Structural Equations for Degenerate Metric. arXiv.math.DG /1111.0646, November 2011.
  28. [28] C. Stoica. Schwarzschild’s Singularity is Semi-Regularizable. November 2011.
  29. [29] C. Stoica. Analytic Reissner-Nordstrom Singularity. arXiv:gr-qc /1111.4332, November 2011.
  30. [30] Robert M. Wald. General Relativity. University Of Chicago Press, June 1984.
DOI: https://doi.org/10.2478/v10309-012-0050-3 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 213 - 238
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Ovidiu-Cristinel Stoica, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.