Have a personal or library account? Click to login
Sets of tetrahedra, defined by maxima of distance functions Cover
By: Joël Rouyer and  Costin Vîlcu  
Open Access
|May 2013

References

  1. [1] P. K. Agarwal, B. Aronov, J. O’Rourke and C. A. Schevon, Star unfolding of a polytope with applications, SIAM J. Comput. 26 (1997), 1689-171310.1137/S0097539793253371
  2. [2] A. D. Alexandrov, Die innere Geometrie cler konvexen Flächen, Akademie-Verlag, Berlin, 1955
  3. [3] A. D. Alexandrov, Convex Polyhedra, Springer-Verlag, Berlin, 2005
  4. [4] B. Aronov and J. O’Rourke, Non overlap of the star unfolding, Discrete Comput. Geom. 8 (1992), 219-25010.1007/BF02293047
  5. [5] H. Buseman, Convetf surfaces, Dover, New York, 2008, originally published in 1958 by Interscience Publishers, Inc.
  6. [6] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, Springer-Verlag, New York, 199110.1007/978-1-4612-0963-8
  7. [7] E. D. Demaine and J. O’Rourke, Geometric folding algorithms. Lineages, Origami, Polyhedra, Cambridge University Press, 200710.1017/CBO9780511735172
  8. [8] J. Itoh, C. Nara and C. Vilcu, Continuous foldings of convex polyhedra, to appear
  9. [9] J. Itoh and C. Vilcu, Farthest points and cut loci on some degenerate convex surfaces, J. Geom. 80 (2004), 106-12010.1007/s00022-004-1652-3
  10. [10] J. M. Lee, Manifold and differentiable geometry, Graduate Studies in Mathematics 107., Providence, 2004
  11. [11] J Rouyer, Antipodes sur le tétraèdre regulier, J. Geom. 77 (2003), 152-17010.1007/s00022-003-1617-y
  12. [12] J. Rouyer, On antipodes on a convex polyhedron, Adv. Geom. 5 (2005), 497-50710.1515/advg.2005.5.4.497
  13. [13] J. Rouyer, On antipodes on a convex polyhedron (II), Adv. Geom. 10 (2010), 403-41710.1515/advgeom.2010.014
  14. [14] J. Rouyer and T. Sari, As many antipodes as vertices on convex polyhedra, Adv. Geom. 12 (2012), 43-6110.1515/advgeom.2011.030
  15. [15] T. Sakai, Riemannian Geometry, Translation of Mathematical Mono- graphs 149, Amer. Math. Soc. 199610.1090/mmono/149
  16. [16] M. Sharir and A. Schorr, On shortest paths in polyhedral spaces, SIAM J. Comput. 15 (1986), 193-21510.1137/0215014
  17. [17] C. Vilcu, Properties of the farthest point mapping on convex surfaces, Rev. Roum. Math. Pures Appi. 51 (2006), 125-134
  18. [18] C. Vilcu and T. Zamfirescu, Multiple farthest points on Alexandrov surfaces, Adv. Geom. 7 (2007), 83-10010.1515/ADVGEOM.2007.006
  19. [19] V. A. Zalgaller, An isoperimetric problem for tetrahedra, J. Math. Sci. 140 (2007), 511-52710.1007/s10958-007-0431-8
  20. [20] T. Zamfirescu, Farthest points on convex surfaces, Math. Z. 226 (1997), 623-63010.1007/PL00004360
  21. [21] Tudor Zamfirescu, Extreme points of the distance function on a convex surface, Trans. Amer. Math. Soc. 350 (1998), 1395-1406. 10.1090/S0002-9947-98-02106-0
DOI: https://doi.org/10.2478/v10309-012-0049-9 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 197 - 212
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Joël Rouyer, Costin Vîlcu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.