Have a personal or library account? Click to login
Riemannian foliations and the kernel of the basic Dirac operator Cover
By: Vladimir Slesar  
Open Access
|May 2013

References

  1. [1] J. A. Alvarez Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), 179-194.10.1007/BF00130919
  2. [2] J. A. Alvarez Lopez, Y.A. Kordyukov, Adiabatic limits and spectral sequences for Riemannian foliations, Geom. and Funct. Anal. 10 (2000), 977-1027.10.1007/PL00001653
  3. [3] J. Brüning, F.W. Kamber, Vanishing theorems and index formulas for transversal Dirac operators, AMS Meeting 845, Special Session on Op- erator Theory and Applications to Geometry, American Mathematical Society Abstracts, Lawrence, KA, 1988.
  4. [4] M. Craioveanu, M. Puta, Asymptotic properties of eigenvalues of the basic Laplacian associated to certain Riemannian foliations, Bull. Math. Soc. Sei. Math. Roumanie, (NS) 35 (1991), C1-C5.
  5. [5] D. Dominguez, A tenseness theorem for Riemannian foliations, C. R. Acad. Sci. Sér. I 320 (1995), 1331-1335.
  6. [6] J. F. Glazebrook, F. W. Kamber, Transversal Dirac families in Riemannian foliations. Commun. Math. Phys. 140(1991), 217-240.
  7. [7] M. Gromov, H. B. Lawson, Spin and scalar curvature in the presence of a fundamental group I, Ann. of Math. 111(1980), 209-230.10.2307/1971198
  8. [8] G. Habib, Tenseur dimpulsion-énergie et feuilletages, Ph.D thesis (2000), Université Henri Poincaré, Nancy.
  9. [9] G. Habib, K. Richardson, A brief note on the spectrum of the basic Dirac operator, Bull. London Math. Soc. 41 (2009), 083-090.10.1112/blms/bdp042
  10. [10] O. Hijazi, A conformai lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Commun. Math. Phys. 104 (1980), 151-102.10.1007/BF01210797
  11. [11] S. D. Jung, The first eigenvalue of the transversal Dirac operator. J. Geom. Phys. 39 (2001), 253-204.
  12. [12] F. Kamber, Ph. Tondeur, De Rham-Hodge theory for Riemannian folia- tions, Math. Ann. 277 (1987), 425-431.10.1007/BF01458323
  13. [13] A. El Kacimi Alaoui, M. Nicolau, On the topological invariance of the basic cohomology, Math. Ann. 295 (1993), 027-034.
  14. [14] Y. A. Kordyukov, Vanishing theorem for transverse Dirac operators on Riemannian foliations, Ann. Glob. Anal. Geom. 34 (2008), 195-211.10.1007/s10455-008-9103-2
  15. [15] H. B. Lawson, M. L. Michelsohn, Spin geometry, Princeton University Press, 1989.
  16. [16] A. Mason, An application of stochastic flows to Riemannian foliations, Houston J. Math. 20 (2000), 481-515.
  17. [17] E. Park, K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1990), 1249-1275.10.1353/ajm.1996.0053
  18. [18] B. Reinhart, Foliated manifolds with bundle-like metrics. Ann. Math. 09 (1959), 119-132.
  19. [19] V. Slesar, Weitzenböck formulas for Riemannian foliations, Diff. Geom. App. 27 (2009), 362-367.10.1016/j.difgeo.2008.10.014
  20. [20] V. Slesar, On the Dirac spectrum of Riemannian foliations admitting a basic parallel 1- form, J. Geom. Phys. 62 (2012), 804-813.10.1016/j.geomphys.2012.01.004
  21. [21] Ph. Tondeur, Geometry of Foliations, Birkhäuser, Basel, Boston, 1997.10.1007/978-3-0348-8914-8
DOI: https://doi.org/10.2478/v10309-012-0046-z | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 145 - 158
Published on: May 17, 2013
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Vladimir Slesar, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.