Have a personal or library account? Click to login
On formal Riemannian metrics Cover

References

  1. [1] F. A. Belgun, On the metric structure of non-Kähler complex surfaces, Math. Ann. 317 (2000), 1-40.10.1007/s002080050357
  2. [2] V. Bangert, M. Katz, An optimal Loewner-type systolic inequality and harmonic one-forms of constant norm, Comm. Anal. Gcom. 12 (2004) no.3, 703-732.
  3. [3] P. Deligne, Ph. Griffith, J. Morgan, D. Sullivan, Beal homotopy theory of Kahler manifolds, Inventiones Mathematicae 29 (1975) no.3, 245-274.
  4. [4] S. Dragomir and L. Ornea, Locally conformai Kähler geometry, Progress in Math. 155, Birkhäuser, Boston, Basel, 1998.10.1007/978-1-4612-2026-8
  5. [5] J.-F. Grosjean, P.-A. Nagy, On the cohomology algebra of some classes of geometrically formal manifolds, Proc. Lond. Math. Soc. 98 (2009), 607-630.10.1112/plms/pdn047
  6. [6] D. Kotschick, On products of harmonic forms, Duke Math. J. 107, (2001), 521-531.10.1215/S0012-7094-01-10734-5
  7. [7] D. Kotschick, S. Terzic, On formality of generalized symmetric spaces, Math. Proc. Cambridge Philos. Soc. 134 (2003), 491-505.10.1017/S0305004102006540
  8. [8] D. Kotschick, S. Terzic, Geometric formality of homogeneous spaces and of biquotients, Pacific J. Math. 249 (2011), 157-176.10.2140/pjm.2011.249.157
  9. [9] P.-A. Nagy, On length and product of harmonic forms in Kähler geometry, Math. Z. 254, 199-218.10.1007/s00209-006-0942-x
  10. [10] P.-A. Nagy, C. Vernicos, The length of harmonic forms on a compact Riemannian manifold, Trans. Amer. Math. Soc. 356 (2004), 2501-2513.10.1090/S0002-9947-04-03546-9
  11. [11] L. Ornea, M. Pilca, Remarks on the product of harmonic forms, Pacific J. Math. 250 (2011), 353 { 363.10.2140/pjm.2011.250.353
  12. [12] L. Ornea, M. Verbitsky, Structure theorem for compact Vaisman manifolds, Math. Res. Lett. 10 (2003), 799{805.10.4310/MRL.2003.v10.n6.a7
  13. [13] D. Sullivan, Innitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269{331.10.1007/BF02684341
  14. [14] Ph. Tondeur, Foliations on Riemannian Manifolds, Springer-Verlag, New York, 1988.10.1007/978-1-4613-8780-0
  15. [15] I. Vaisman, Generalized Hopf manifolds, Geom. Dedicata 13 (1982), 231-255. 10.1007/BF00148231
DOI: https://doi.org/10.2478/v10309-012-0045-0 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 131 - 144
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 , published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.