Have a personal or library account? Click to login
New results toward the classification of biharmonic submanifolds in 𝕊n Cover
By: Cristina Flaut  
Open Access
|May 2013

References

  1. [1] A. Balmuş, S. Montaldo, C. Oniciuc. Biharmonic PNMC submanifolds in spheres, to appear in Ark. Mat.
  2. [2] A. Balmuş, S. Montaldo, C. Oniciuc. Properties of biharmonic submani- folds in spheres. J. Geom. Symmetry Phys. 17 (2010), 87 102.
  3. [3] A. Balmuş, S. Montaldo, C. Oniciuc. Biharmonic hypersurfaces in 4- dimensional space forms. Math. Nachr. 283 (2010), 1696-1705.
  4. [4] A. Balmuş, S. Montaldo, C. Oniciuc. Classification results and new exam- ples of proper biharmonic submanifolds in spheres. Note Mat. 28 (2008), suppl. 1, 49-61.
  5. [5] A. Balmuş, S. Montaldo, C. Oniciuc. Classification results for biharmonic submanifolds in spheres. Israel J. Math. 168 (2008), 201-220.
  6. [6] A. Balmuş, C. Oniciuc. Biharmonic submanifolds with parallel mean cur- vature vector field in spheres. J. Math. Anal. Appi. 386 (2012), 619-630.
  7. [7] A. Balmuş, C. Oniciuc. Biharmonic surfaces of §4. Kyushu .J. Math. 63 (2009), 339-345.10.2206/kyushujm.63.339
  8. [8] A. Besse. Einstein manifolds. Springer-Verlag, Berlin, 1987.10.1007/978-3-540-74311-8
  9. [9] R. Caddeo, S. Montaldo, C. Oniciuc. Biharmonic submanifolds in spheres. Israel J. Math. 130 (2002), 109-123.10.1007/BF02764073
  10. [10] R. Caddeo, S. Montaldo, C. Oniciuc. Biharmonic submanifolds of §3. Internat. J. Math. 12 (2001), 807-876.
  11. [11] S. Chang. A closed hypersurface with constant scalar and mean curvature in §4 is isoparametric. Comm. Anal. Geom 1 (1993), 71-100.10.4310/CAG.1993.v1.n1.a4
  12. [12] B-Y. Chen. Pseudo-Riemannian geometry, invariants and applications, World Scientific, Hackensack, NJ, 2011.10.1142/8003
  13. [13] B-Y. Chen. Complete| classification of parallel spatial surfaces in pseudo- Riemannian space forms with arbitrary index and dimension. J. Geom. Phys. 00 (2010), 200-280.10.1016/j.geomphys.2009.09.012
  14. [14] B-Y. Chen. A report on submanifolds of finite type. Soochow J. Math. 22 (1990), 117-337.
  15. [15] B-Y. Chen. Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17 (1991), 109-188.
  16. [16] B-Y. Chen. Total Mean Curvature and Submanifolds of Finite Type. Se- ries in Pure Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.10.1142/0065
  17. [17] J.H. Chen. Compact 2-harmonic hypersurfaces in §n+1(l). Acta Math. Sinica 30 (1993), 49-50.
  18. [18] Q.-M. Cheng. Compact hypersurfaces in a unit sphere with infinite fun- damental group. Pacific .1. Math. 212 (2003), 341-347.10.2140/pjm.2003.212.49
  19. [19] S.S. Chern, M. doCarmo, S. Kobayashi. Minimal submanifolds of a sphere with second fundamental form of constant length. 1970 Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, 111., 1908), 59-75 Springer, New York.10.1007/978-3-642-48272-4_2
  20. [20] F. Defever. Hypersurfaces of E4 with harmonic mean curvature vector. Math. Nachr. 190 (1998), 01-09.
  21. [21] I. Dimitric. Submanifolds of Em with harmonic mean curvature vector. Bull. Inst. Math. Acad. Sinica 20 (1992), 53-05.
  22. [22] J. Erbacher. Reduction of the codimension of an isometric immersion. J. Differ. Geom. 5 (1971), 333-340.10.4310/jdg/1214429997
  23. [23] D. Fetcu, C. Oniciuc. Biharmonic integral C-parallel submanifolds in 7- dimensional Sasakian space forms, Tohoku Math. J., to appear.
  24. [24] T. Hasanis, T. Vlachos. Hypersurfaces in E4 with harmonic mean curva- ture vector field. Math. Nachr. 172 (1995), 145-169.
  25. [25] T. Ichiyama, .1.1. Inoguchi, H. Urakawa. Bi-harmonic maps and bi-Yang- Mills fields. Note Mat. 28 suppl. n. 1 (2008), 233-275.
  26. [26] G.Y. Jiang. 2-harmonic isometric immersions between Riemannian man- ifolds. Chinese Ann. Math. Ser. A 7 (1986), 130-144.
  27. [27] H.B. Lawson. Local rigidity theorems for minimal hypersurfaces. Ann. of Math. (2) 89 (1969), 187-197.10.2307/1970816
  28. [28] P. Li. Harmonic functions and applications to complete manifolds. XIV Escola de Geometria Diferencial (IMPA), Rio de Janeiro, 2006.
  29. [29] N. Nakauchi, H. Urakawa. Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature. Ann. Glob. Anal. Geom. 40 (2011), 125-131.
  30. [30] N. Nakauchi, H. Urakawa. Biharmonic submanifolds in a Riemannian manifold with non-positive curvature. Results Math., to appear.
  31. [31] C. Oniciuc. Tangency and Harmonicity Properties. PhD The- sis, Geometry Balkan Press 2003, http://www.mathem.pub.ro/-dgds/mono/dgdsmono.htm
  32. [32] C. Oniciuc. Biharmonic maps between Riemannian manifolds. An. Stiint. Univ. ALL Cuza Iasi Mat (N.S.) 48 (2002), 237-248.
  33. [33] T[ Sasahara. Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors. Pubi. Math. Debrecen 67 (2005), 285-303.10.1515/dema-2005-0121
  34. [34] Y.-L. Ou, L. Tang. On the generalized Chen’s conjecture on biharmonic submanifolds. Michigan Math. J., to appear.
  35. [35] C. Peng, C. Terng. Minimal hypersurfaces of spheres with constant scalar curvature. Seminar on minimal submanifolds, 177-198, Ann. of Math. Stud., 103, Princeton Univ. Press, Princeton, NJ, 1983.10.1515/9781400881437-010
  36. [36] W. Santos. Submanifolds with parallel mean curvature vector in spheres. Tohoku Math. J. 46 (1994), 403-415.10.2748/tmj/1178225720
  37. [37] J. Simons. Minimal varieties in Riemannian manifolds. Ann. of Math. 88 (1968), 62-105.[38] X.F. Wang, L. Wu. Proper biharmonic submanifolds in a sphere. Acta Math. Sin. (Engl. Ser.) 28 (2012), 205-218.10.1007/s10114-012-9018-5
  38. [39] S.-T. Yau. Harmonic functions on complete Riemannian manifolds. Com- mun. Pure Appi. Math. 28 (1975), 201-228.10.1002/cpa.3160280203
  39. [40] S.-T. Yau. Submanifolds with constant mean curvature I. Amer. J. Math. 90 (1974), 34G-36G.
  40. [41] W. Zhang. New examples of biharmonic submanifolds in CPn and S2n+1. An. Stiint. Univ. Al.I. Cuza Iasi Mat (N.S.) 57 (2011), 207-218. 10.2478/v10157-010-0046-0
DOI: https://doi.org/10.2478/v10309-012-0043-2 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 89 - 114
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 , published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.