Have a personal or library account? Click to login
Geometry of the anisotropic minimal surfaces Cover

References

  1. [1] Blyth M. and Pozrikidis C., Solution Space of Axisymmetric Capsules Enclosed by Elastic Membranes, Eur. J. Mech. A 23 (2004) 877-892.10.1016/j.euromechsol.2004.05.007
  2. [2] Chen B. and Kamien R., Nematic Films and Radially Anisotropic Delau- nay Surfaces, Eur. Phys. J. E 28 (2009) 315-329.10.1140/epje/i2008-10441-1
  3. [3] Delaunay C., Sur la surface de revolution dont la courbure moyenne est constante, J. Math. Pures et Appliquées, 6 (1841) 309-320.
  4. [4] Djondjorov P., Hadzhilazova M., Mladenov I. and Vassilev V., Beyond Delaunay Surfaces, J. Geom. Symmetry Phys. 18 (2010) 1-11.
  5. [5] Hu J.-G. and Ou-Yang Z.-C., Shape Equations of the Axisymmetric Vesi- cles, Phys. Rev. E 47 (1993) 461-467.10.1103/PhysRevE.47.461
  6. [6] Konopelchenko B., On Solutions of the Shape Equation for Membranes and Strings, Phys. Lett. B 414 (1997) 58-64.10.1016/S0370-2693(97)01137-4
  7. [7] Lipowsky R. and Sackmann E. (Eds), Handbook of Biological Physics (Structure and Dynamics of Membranes) vol 1, Elsevier, Amsterdam 1995.10.1016/S1383-8121(06)80018-7
  8. [8] Ludu A., Nonlinear Waves and Solitons on Contours and Closed Surfaces, Springer, Berlin 2007.
  9. [9] Mladenov I., New Solutions of the Shape Equation, Eur. Phys. J. B 29 (2002) 327-330.10.1140/epjb/e2002-00310-y
  10. [10] Mladenov I., Hadzhilazova M., Djondjorov P. and Vassilev V., Some Explicit Solutions of the Shape Equation, In: AIP Conference Proceedings 1301 (2010) 215-227.10.1063/1.3526617
  11. [11] Nitsche J., Boundary Value Problems for Variational Integrals Involving Surface Curvatures, Quarterly Appl. Math. 60 (1993) 363-387.10.1090/qam/1218374
  12. [12] Oprea J., Di erential Geometry and Its Applications, Mathematical Association of America, Washington D. C. 2007.
  13. [13] Ou-Yang Z.-C. and Helfrich W., Bending Energy of Vesicle Membranes: General Expressions for the First, Second and Third Variation of the Shape Energy and Applications to Spheres and Cylinders, Phys. Rev. A 39 (1989) 5280-5288.10.1103/PhysRevA.39.5280
  14. [14] Ou-Yang Z.-C., Selection of Toroidal Shape of Partially Polymerized Membranes, Phys. Rev. E 47 (1993) 747-749.10.1103/PhysRevE.47.7479960058
  15. [15] Ou-Yang Z.-C., Liu J.-X., and Xie Y.-Z., Geometric Methods in the Elastic Theory of Membranes in Liquid Crystal Phases, World Scientific, Hong Kong 1999.
  16. [16] Vassilev V., Djondjorov P. and Mladenov I., Cylindrical Equilibrium Shapes of Fluid Membranes, J. Phys. A: Math. & Theor. 41 (2008) 435201 (16pp); doi:10.1088/1751-8113/41/43/435201. 10.1088/1751-8113/41/43/435201
DOI: https://doi.org/10.2478/v10309-012-0042-3 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 79 - 88
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Ivaïlo M. Mladenov, Mariana Ts. Hadzhilazova, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.