References
- [1] M. Colţoiu: Coverings of 1-convex manifolds with 1-dimensional excep- tional set. Comment. Math. Helv. 68 (1993), no. 3, 469-479.
- [2] M. Colţoiu; C. Joiţa: The disk property of coverings of 1-convex surfaces. Proc. Amer. Math. Soc. 140 (2012), no. 2, 575-580.
- [3] M. Colţoiu; C. Joiţa: Convexity properties of coverings of 1-convex sur- faces. Preprint, arXiv:1110.5791vl.
- [4] M. Colţoiu; J. Ruppenthal: On Hartogs’ extension theorem on (n - 1)- complete complex spaces. J. Reine Angew. Math. 637 (2009), 41-47.10.1515/CRELLE.2009.089
- [5] M. Colţoiu; M. Tibăr: On the disk theorem. Math. Ann. 345 (2009), no. 1, 175-183.
- [6] F. Docquier; H. Grauert: Levisches Problem und Rungescher Satz fur Teilgebiete Steinscher Mannigfaltigkeiten. Math. Ann. 140 (1960), 94-12310.1007/BF01360084
- [7] P. Eyssidieux; L. Katzarkov; T. Pantev; M. Ramachandran: Linear Sha- farevich Conjecture. Preprint, arXiv:0904.0693.
- [8] G. Elencwajg: Pseudo-convexite locale dans les varietes kahleriennes. Ann. Inst. Fourier (Grenoble) 25 (1975), no. 2, 295-314.
- [9] L. Ehrenpreis: A new proof and an extension of Hartogs’ theorem. Bull. Amer. Math. Soc. 67 (1961), 507-509, .
- 10] J. E. Fornaess: 2 dimensional counterexamples to generalizations of the Levi problem. Math. Ann. 230 (1977), no. 2, 169-173.
- 11] J. E.Fornaess; R. Narasimhan: The Levi problem on complex spaces with singularities. Math. Ann. 248 (1980), no. 1, 47-72.
- 12] F. Hartogs: Einige Folgerungcn aus der Cauchyschen Intcgmlformel bei Funktionen mehrerer Veranderlichen, Baycrischc Akademie der Wis- senschaften. Mathematish-Physikalisch Klasse, 36 (1906), 223-292.
- 13] A. Hirschowitz: Pseudoconvexite au-dessus d’espaces plus ou moins ho- mogenes. Invent. Math. 26 (1974), 303-322.10.1007/BF01425555
- 14] F. Lárusson; R. Sigurdsson: Plurisubharmonic functions and analytic discs on manifolds. J. Reine Angew. Math. 501 (1998), 1-39.10.1515/crll.1998.078
- 15] F. Lárusson; R. Sigurdsson: Plurisubharmonicity of envelopes of disc functionals on manifolds. J. Reine Angew. Math. 555 (2003), 27-38.10.1515/crll.2003.013
- 16] E.E. Levi: Studii sui punti singolari essenziali delle funzioni analitiche di due o piu variabili complesse. Annali di Matematica Pura e Applicata, 17 (1910), 61-87.10.1007/BF02419336
- 17] J. Merker; E. Porten: A Morse-theoretical proof of the Hartogs extension theorem. J. Geom. Anal. 17 (2007), no. 3, 513-546.
- 18] J. Merker; E. Porten: The Hartogs extension theorem on (n - Incomplete complex spaces. J. Reine Angew. Math. 637 (2009), 23-39.10.1515/CRELLE.2009.088
- 19] W.F. Osgood: Lehrbuch der Funktionentheońe, Bd II, B.G. Teubner, Leipzig, (1929).
- 20] N. 0vrelid; S. Vassiliadou: Semiglobal results for d on complex spaces with arbitrary singularities, Part II. Trans. Amer. Math. Soc. 363 (2011), no. 12, 6177-6196
- 21] E. A. Poletsky: Pluńsubharmonic functions as solutions of vanational problems, Several complex variables and complex geometry (Santa Cruz, CA, 1989), Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., 1991, pp. 163-171.10.1090/pspum/052.1/1128523
- [22] E. A. Poletsky: The minimum principle. Indiana Univ. Math. J. 51 (2002), 269-303.10.1512/iumj.2002.51.2214
- [23] J.-P. Rosay: Poletsky theory of disks on holomorphic manifolds. Indiana Univ. Math. J. 52 (2003), no. 1, 157-169.
- [24] O. Suzuki: Pseudoconvex domains on a Kähler manifold with posi- tive holomorphic bisectional curvature. Publ. Res. Inst. Math. Sci. 12 (1976/77), no. 1, 191-214.10.2977/prims/1195190963
- [25] A. Takeuchi: Domaines pseudoconvexes sur les variétés Kählériénnés. J. Math. Kyoto Univ. 6 (1967), 323-357. 10.1215/kjm/1250524335