Have a personal or library account? Click to login
Magnetic Schrödinger Operators with Discrete Spectra on Non-Compact Kähler Manifolds Cover

Magnetic Schrödinger Operators with Discrete Spectra on Non-Compact Kähler Manifolds

By: Nicolae Anghel  
Open Access
|May 2013

References

  1. [A1] N. Anghel, On a Class of Magnetic Schrödinger Operators with Discrete Spectrum, Proc. Amer. Math. Soc. 140, No. 5, 1613-1616, (2012).10.1090/S0002-9939-2011-11517-X
  2. [A2] N. Anghel, An Abstract Index Theorem on Non-Compact Riemannian Manifolds, Houston J. Math. 19, 223-237, (1993).
  3. [AHS] J. Avron, I. Herbst, B. Simon, Schrödinger Operators with Magnetic Fields, I. General Interactions, Duke Math. J. 45. 847-883, (1978).10.1215/S0012-7094-78-04540-4
  4. [B] J-M. Bismut, Demailly’s Asymptotic Morse Inequalities. A Heat Equation Proof, J. Funct. Anal. 72. 263-278, (1987).10.1016/0022-1236(87)90089-9
  5. [D] A. Dufresnoy, Un Example de Champ Maqnétique dans Rv'. Duke Math. J. 50, 729-734, (1983). [GH] P. Griffiths, J. Harris, Principles of Algebraic Geometry, John Wiley & Sons, New York, (1978).
  6. [GL] M. Gromov, B. Lawson, Positive Scalar Curvature and the Dirac Opera- tor on Complete Biemannian Manifolds, Publ. Math. IHES, 58, 295-408, (1983).10.1007/BF02953774
  7. [HM] B. Helffer, A. Mohamed, Caractérisation du Spectre Essentiel de VOpérateur de Schrödinger avec un Champ Magnétique, Ann. Inst. Fourier 38, 95-112, (1988).10.5802/aif.1136
  8. [I] A. Iwatsuka, Magnetic Schrödinger Operators with Compact Besolvent, J. Math. Kyoto Univ. 26. 357-374, (1986).10.1215/kjm/1250520872
  9. [KS] V. Kondratiev, M. Shubin, Discreteness of Spectrum for the Magnetic Schrödinger Operators, Commun. Partial Diff. Eqns 27, 477-525, (2002).10.1081/PDE-120002864
  10. [LM] B. Lawson, M-L. Michelsohn, Spin Geometry, Princeton Univ. Press, Princeton, NJ, (1989).
  11. [SI] M. Shubin, Essential Self-Adjointness for Magnetic Schrödinger Oper- ators on Non-Compact Manifolds, Sémin. Equ. Dériv. Partielles, Ecole Polytech., Palaiseau, (1999).
  12. [S2] Pseudo-Differential Operators and Spectral Theory, Springer V., Berlin, (1974).
DOI: https://doi.org/10.2478/v10309-012-0035-2 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 11 - 20
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 Nicolae Anghel, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.