[2] L.C. Ceng, S. Al-Homidan, Q. H. Ansari and J.-C. Yao, An iterative scheme for equilibrium problems and fixed point problems of strict pseudo- contraction mappings, J. Comput. Appl. Math., 223(2009), 967-974. 10.1016/j.cam.2008.03.032
[3] L.C. Ceng, M. Teboulle and J.C. Yao, Weak convergence of an itera- tive method for pseudomonotone variational inequalities and fixed point problems, J. Optim. Theory Appl., 146(2010), 19-31. 10.1007/s10957-010-9650-0
[4] L.C. Ceng and J.C. Yao, Strong convergence theorem by an extragradi- ent method for fixed point problems and variational inequality problems, Taiwan. J. Math., 10(2006), 1293-1303.
[5] L.C. Ceng and J.C. Yao, An extragradient-like approximation method for variational inequality problems and fixed point problems, Appl. Math. Comput., 1906(2007), 206-215.
[6] F. Cianciaruso, V. Colao, L. Muglia and H.K. Xu, On an implicit hi- erarchical fixed point approach to variational inequalities, Bull. Austral. Math. Soc., 80(2009), 117-124. 10.1017/S0004972709000082
[7] F. Cianciaruso, G. Marino, L. Muglia and Y. Yao, On a two-step al- gorithm for hierarchical fixed Point problems and variational inequal- ities, J. Inequalities Appl., 2009(2009), Article ID 208692, 13 pages, doi:10.1155/2009/208692.10.1155/2009/208692
[8] F. Facchinei and J.S. Pang, Finite-dimensional variational inequalities and complementarity problems, Springer Series in Operations Research, vols. I and II. Springer, New York (2003). 10.1007/b97544
[10] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, vol. 28, Cambridge University Press, 1990. 10.1017/CBO9780511526152
[11] B.S. He, Z.H Yang and X.M. Yuan, An approximate proximal- extragradient type method for monotone variational inequalities, J. Math. Anal. Appl., 300(2004), 362-374. 10.1016/j.jmaa.2004.04.068
[13] G.M. Korpelevich, An extragradient method for finding saddle points and for other problems, Ekonomika i Matematicheskie Metody, 12(1976), 747-756.
[15] X. Lu, H. K. Xu, and X. Yin, Hybrid methods for a class of monotone variational inequalities, Nonlinear Anal., 71(2009), 1032-1041. 10.1016/j.na.2008.11.067
[16] C. Matinez-Yanes and H.K. Xu, Strong convergence of the CQ method for fixed point processes, Nonlinear Anal., 64(2006), 2400-2411. 10.1016/j.na.2005.08.018
[17] N. Nadezhkina andW. Takahashi, Strong convergence theorem by a hybrid method for nonexpansive mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim., 16(2006), 1230-1241. 10.1137/050624315
[18] Z. Opial, Weak convergence of the sequence of successive approximations of nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 595-597. 10.1090/S0002-9904-1967-11761-0
[20] K. Shimoji and W. Takahashi, Strong convergence to common fixed points of infinite nonexpasnsive mappings and applications, Taiwanese J. Math., 5(2001), 387-404.
[22] W. Takahashi and M. Toyoda, Weak convergence theorems for nonex- pansive mappings and monotone mappings, J. Optim. Theory Appl., 118(2003), 417-428. 10.1023/A:1025407607560
[23] H.K. Xu and T. H. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optimiz. Theory Appl., 119(2003), 185-201. 10.1023/B:JOTA.0000005048.79379.b6
[25] Y. Yao, R. Chen and H.K. Xu, Schemes for finding minimum-norm so- lutions of variational inequalities, Nonlinear Anal., 72(2010), 3447-3456. 10.1016/j.na.2009.12.029
[26] Y. Yao, Y.C. Liou and R. Chen, Convergence theorems for fixed point problems and variational inequality problems in Hilbert spaces, Math. Nachr., 282(12)(2009), 1827-1835. 10.1002/mana.200610817
[27] Y. Yao, Y.-C. Liou, and J.-C. Yao, Convergence theorem for equilib- rium problems and fixed point problems of infinite family of nonexpansive mappings, Fixed Point Theory and Applications, 2007(2007), Article ID 64363, 12 pages. 10.1155/2007/64363
[28] Y. Yao and M.A. Noor, On viscosity iterative methods for variational inequalities, J. Math. Anal. Appl., 325(2007), 776-787. 10.1016/j.jmaa.2006.01.091
[29] Y. Yao and M.A. Noor, On modified hybrid steepest-descent methods for general variational inequalities, J. Math. Anal. Appl., 334(2007), 1276-1289. 10.1016/j.jmaa.2007.01.036