[1] A. Bornik, B. Reitinger, R. Beichel, Simplex-Mesh based Surface Reconstruction and Representation of Tubular Structures, in Proceedings of BVM2005, Springer, (2005).
[3] R. Caddeo, C. Oniciuc, P. Piu, Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group, Rend. Sem. Mat. Univ. Politec. Torino 62 (3) (2004), 265-277.
[12] G. Landsmann, J. Schicho, F. Winkler, The Parametrization of Canal Surfaces and the Decomposition of Polynomials into a Sum of Two Squares, J. Symb. Comput. 32(1/2)(2001), 119-132. 10.1006/jsco.2001.0453
[14] V.B. Matveev , Salle M.A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1991. 10.1007/978-3-662-00922-2
[15] A. V. Mikhaılov, A. B. Shabat, V. V. Sokolov, The symmetry approach to classification of integrable equations. What Is Integrability? Springer Series on Nonlinear Dynamics, Springer-Verlag, Berlin (1991), 115-184. 10.1007/978-3-642-88703-1_4
[17] Y. L. Ou, p-Harmonic morphisms, biharmonic morphisms, and nonharmonic biharmonic maps , J. Geom. Phys. 56 (2006), 358-374. 10.1016/j.geomphys.2005.02.005
[18] S. Rahmani, Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302. 10.1016/0393-0440(92)90033-W
[21] E. Turhan, T. K¨orpınar, Position vector of spacelike biharmonic curves in the Lorentzian Heisenberg group Heis3, An. St. Univ. Ovidius Constanta 19 (1) (2011), 285-296. 10.2478/v10309-012-0029-0
[22] E. Turhan, T. K¨orpınar, Characterize on the Heisenberg Group with left invariant Lorentzian metric, Demonstratio Mathematica 42 (2) (2009), 423-428. 10.1515/dema-2009-0219
[23] E. Turhan, T. K¨orpınar, On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis3, Zeitschrift f¨ur Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648. 10.1515/zna-2010-8-904