Have a personal or library account? Click to login
Tubular Surfaces Around Timelike Biharmonic Curves in Lorentzian Heisenberg Group Heis3 Cover

Tubular Surfaces Around Timelike Biharmonic Curves in Lorentzian Heisenberg Group Heis3

Open Access
|May 2013

References

  1. [1] A. Bornik, B. Reitinger, R. Beichel, Simplex-Mesh based Surface Reconstruction and Representation of Tubular Structures, in Proceedings of BVM2005, Springer, (2005).
  2. [2] A.V. B¨acklund, Einiges ¨uber Curven- und Fl¨achen-Transformationen, Lunds Univ. Arsskr. 10 (1874), 1-12.
  3. [3] R. Caddeo, C. Oniciuc, P. Piu, Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group, Rend. Sem. Mat. Univ. Politec. Torino 62 (3) (2004), 265-277.
  4. [4] R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds in spheres, Israel J. Math. 130 (2002), 109-123. 10.1007/BF02764073
  5. [5] R. Caddeo, S. Montaldo, P. Piu, Biharmonic curves on a surface, Rend. Mat. Appl. 21 (2001), 143-157.
  6. [6] J. Eells, J.H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160. 10.2307/2373037
  7. [7] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press, 1998
  8. [8] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media, Prentice-Hall, New Jersey, (1965)
  9. [9] J. Inoguchi, Submanifolds with harmonic mean curvature in contact 3- manifolds, Colloq. Math. 100 (2004), 163-179. 10.4064/cm100-2-2
  10. [10] G.Y. Jiang, 2-harmonic maps and their first and second variation formulas, Chinese Ann. Math. Ser. A 7 (1986), 389-402.
  11. [11] T. K¨orpınar, E. Turhan, On Horizontal Biharmonic Curves In The Heisenberg Group Heis3, Arab. J. Sci. Eng. Sect. A Sci. 35 (1) (2010), 79-85.
  12. [12] G. Landsmann, J. Schicho, F. Winkler, The Parametrization of Canal Surfaces and the Decomposition of Polynomials into a Sum of Two Squares, J. Symb. Comput. 32(1/2)(2001), 119-132. 10.1006/jsco.2001.0453
  13. [13] W. E. Langlois, Slow Viscous Flow, Macmillan, New York, Collier- Macmillan, London, 1964.
  14. [14] V.B. Matveev , Salle M.A., Darboux transformations and solitons, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1991. 10.1007/978-3-662-00922-2
  15. [15] A. V. Mikhaılov, A. B. Shabat, V. V. Sokolov, The symmetry approach to classification of integrable equations. What Is Integrability? Springer Series on Nonlinear Dynamics, Springer-Verlag, Berlin (1991), 115-184. 10.1007/978-3-642-88703-1_4
  16. [16] C. Oniciuc, On the second variation formula for biharmonic maps to a sphere, Publ. Math. Debrecen 61 (2002), 613-622.
  17. [17] Y. L. Ou, p-Harmonic morphisms, biharmonic morphisms, and nonharmonic biharmonic maps , J. Geom. Phys. 56 (2006), 358-374. 10.1016/j.geomphys.2005.02.005
  18. [18] S. Rahmani, Metriqus de Lorentz sur les groupes de Lie unimodulaires, de dimension trois, Journal of Geometry and Physics 9 (1992), 295-302. 10.1016/0393-0440(92)90033-W
  19. [19] T. Sasahara, Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors, Publ. Math. Debrecen 67 (2005), 285-303.
  20. [20] J. Schicho, Proper Parametrization of Real Tubular Surfaces, J. Symb. Comput. 30(5) (2000), 583-593. 10.1006/jsco.2000.0393
  21. [21] E. Turhan, T. K¨orpınar, Position vector of spacelike biharmonic curves in the Lorentzian Heisenberg group Heis3, An. St. Univ. Ovidius Constanta 19 (1) (2011), 285-296. 10.2478/v10309-012-0029-0
  22. [22] E. Turhan, T. K¨orpınar, Characterize on the Heisenberg Group with left invariant Lorentzian metric, Demonstratio Mathematica 42 (2) (2009), 423-428. 10.1515/dema-2009-0219
  23. [23] E. Turhan, T. K¨orpınar, On Characterization Of Timelike Horizontal Biharmonic Curves In The Lorentzian Heisenberg Group Heis3, Zeitschrift f¨ur Naturforschung A- A Journal of Physical Sciences 65a (2010), 641-648. 10.1515/zna-2010-8-904
DOI: https://doi.org/10.2478/v10309-012-0029-0 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 431 - 446
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2013 Talat Körpinar, Essin Turhan, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.