Have a personal or library account? Click to login
On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary Δnm-statistical convergence Cover

On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary Δnm-statistical convergence

Open Access
|May 2013

References

  1. [1] Y. Altin, M. Et and B.C. Tripathy, The sequence space | ¯Np|(M, r, q, s) on seminormed spaces, Applied Mathematics and Computation 154 (2004), 423-430. 10.1016/S0096-3003(03)00722-7
  2. [2] R. Colak, B.C. Tripathy and M. Et, Lacunary strongly summable se- quences and q-lacunary almost statistical convergence, Vietnam J. Math. 34(2) (2006), 129-138.
  3. [3] M. Et, Y. Altin, B. Choudhary and B.C. Tripathy, On some classes of sequences defined by sequences of Orlicz functions, Mathematical Inequal- ities and Applications 9(2) (2006), 335-342. 10.7153/mia-09-33
  4. [4] M. Et and R. Colak, On generalized difference sequence spaces, Soochow J. Math. 21(4) (1995), 377-386.
  5. [5] H. Fast, Surla convergence statistique, Colloq. Math. 2 (1951), 241-244. 10.4064/cm-2-3-4-241-244
  6. [6] J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313. 10.1524/anly.1985.5.4.301
  7. [7] A.R. Freedman, J.J. Sember and M. Raphael, Some Ces`aro-type summa- bility spaces, Proc. Lond. Math. Soc. 37(3) (1978), 508-520. 10.1112/plms/s3-37.3.508
  8. [8] H. Hudzik, A. Kami´nska and M. Mastylo, On the dual of Orlicz-Lorentz space, Proc. Amer. Math. Soc. 130(6) (2002), 1645-1654. 10.1090/S0002-9939-02-05997-X
  9. [9] M. I¸sik, M. Et and B.C. Tripathy, On some new seminormed sequence spaces defined by Orlicz functions, Thai J. Math. 2(1) (2004), 141-149.
  10. [10] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24(2) (1981), 169-176. 10.4153/CMB-1981-027-5
  11. [11] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379-390. 10.1007/BF02771656
  12. [12] D. Rath and B.C. Tripathy, Matrix maps on sequence spaces associated with sets of integers, Indian J. Pure Appl. Math. 27(2) (1996) 197-206.
  13. [13] I. J. Schoenberg, The integrability of certain functions and related summa- bility methods, Amer. Math. Monthly, 66 (1959), 361-375. 10.1080/00029890.1959.11989303
  14. [14] T. ˘Sal`at, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
  15. [15] B.C. Tripathy, Matrix transformations between some classes of sequences, J. Math. Analysis Appl. 206 (1997), 448-450. 10.1006/jmaa.1997.5236
  16. [16] B.C. Tripathy, On generalized difference paranormed statistically conver- gent sequences, Indian J. Pure Appl. Math. 35(5) (2004),655-663.
  17. [17] B.C. Tripathy, Y. Altin and M. Et, Generalized difference sequences spaces on seminormed spaces defined by Orlicz functions, Math. Slovaca 58(3) (2008), 315-324 10.2478/s12175-008-0077-0
  18. [18] B.C. Tripathy and A. Baruah, New type of difference sequence spaces of fuzzy real numbers, Mathematical Modelling and Analysis 14(3) (2009), 391-397. 10.3846/1392-6292.2009.14.391-397
  19. [19] B.C. Tripathy and A. Baruah, Lacunary statistically convergent and la- cunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J. 50(4)(2010), 565-574.. 10.5666/KMJ.2010.50.4.565
  20. [20] B.C. Tripathy and S. Borgogain, The sequence space m(M, φ,Δnm, p)F , Mathematical Modelling and Analysis 13(4) (2008), 577-586. 10.3846/1392-6292.2008.13.577-586
  21. [21] B.C. Tripathy; B. Choudhary and B. Sarma, On some new type gen- eralized difference sequence spaces, Kyungpook Math. J. 48(4) (2008), 613-622. 10.5666/KMJ.2008.48.4.613
  22. [22] B.C. Tripathy and H. Dutta, On some new paranormed difference se- quence spaces defined by Orlicz functions, Kyungpook Math. J. 50 (2010), 59-69. 10.5666/KMJ.2010.50.1.059
  23. [23] B. C. Tripathy and A. Esi, A new type of difference sequence spaces, Int. J. Sci. Technol. 1(1) (2006), 11-14.
  24. [24] B .C. Tripathy, A. Esi and B. K. Tripathy, On a new type of generalized difference Ces`aro Sequence spaces, Soochow J. Math. 31:3 (2005), 333-340.
  25. [25] B.C. Tripathy and B. Hazarika: Paranormed I-convergent sequences spaces; Math. Slovaca; 59(4)(2009), 485-494. 10.2478/s12175-009-0141-4
  26. [26] B.C. Tripathy and B. Hazarika, I-convergent sequences spaces defined by Orlicz function, Acta Mathematica Applicatae Sinica; 27(1)(2011) 149-154. 10.1007/s10255-011-0048-z
  27. [27] B. C. Tripathy and S. Mahanta, On a class of generalized lacunary dif- ference sequence spaces defined by Orlicz function, Acta Mathematica Applicata Sinica 20(2) (2004), 231-238. 10.1007/s10255-004-0163-1
  28. [28] B.C. Tripathy and B. Sarma, Statistically convergent difference double sequence spaces, Acta Mathematica Sinica 24(5) (2008), 737-742. 10.1007/s10114-007-6648-0
  29. [29] B.C. Tripathy and B. Sarma, Sequence spaces of fuzzy real numbers de- fined by Orlicz functions, Math. Slovaca 58(5) (2008), 621-628. 10.2478/s12175-008-0097-9
  30. [30] B.C. Tripathy and B. Sarma, Vector valued double sequence spaces defined by Orlicz function, Math. Slovaca 59(6) (2009), 767-776. 10.2478/s12175-009-0162-z
  31. [31] B.C. Tripathy and B. Sarma, Double sequence spaces of fuzzy numbers defined by Orlicz function, Acta Mathematica Scientia 31B(1) (2011), 134-140. 10.1016/S0252-9602(11)60215-4
  32. [32] B. C. Tripathy and M. Sen, On generalized statistically convergent se- quence spaces, Indian J. Pure Appl. Math. 32(11) (2001), 1689-1694.
  33. [33] B.C. Tripathy and M. Sen, Characterization of some matrix classes in- volving paranormed sequence spaces, Tamkang J. Mathematics 37(2) (2006), 155-162.10.5556/j.tkjm.37.2006.160
DOI: https://doi.org/10.2478/v10309-012-0028-1 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 417 - 430
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2013 Binod Chandra Tripathy, Hemen Dutta, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.