Have a personal or library account? Click to login
Weingarten spacelike hypersurfaces in a de Sitter space Cover

References

  1. [1] N. Abe, N. Koike and S. Yamaguchi, Congruence theorems for proper semi-Riemannian hypersurfaces in a real space form, Yokohama Math. J., 35(1987), no. 1-2, 123-136.
  2. [2] K. Akutagawa, On spacelike hypersurfaces with constant mean curvature in a de Sitter space, Math. Z., 196(1987), no. 1, 13-19.
  3. [3] J.A. Aledo, J.M. Espinar, A conformal representation for linear Wein- garten surfaces in the de Sitter space, J. Geom. Phys., 57(2007), no. 8, 1669-1677.
  4. [4] A.C. Asperti, R.M.B. Chaves and B.C. Valério, Ruled Weingarten hyper- surfaces in the Lorentz-Minkowski space and in de Sitter space, J. Geom. Phys., 60(2010), no. 4, 553-561.
  5. [5] Z. Hu, M.Scherfner and S. Zhai, On spacelike hypersurfaces with constant scalar curvature in the de Sitter space, Differential Geom. Appl., 25(2007), no. 6, 594-611.
  6. [6] C. Gerhardt, Curvature estimates for Weingarten hypersurfaces in Rie- mannian manifolds, Adv. Calc. Var., 1(2008), no. 1, 123-132.
  7. [7] A. Brasil Jr., A. G. Colares and O. Palmas, Complete spacelike hypersur- faces with constant mean curvature in the de Sitter space: a gap Theorem, Illinois J. Math., 47(2003), no. 3, 847-866.
  8. [8] H. Li. Global rigidity theorems of hypersurfaces, Ark. Mat., 35(1997), no. 2, 327-351. 10.1007/BF02559973
  9. [9] Z.H. Hou, D. Yang, Linear Weingarten spacelike hypersurfaces in de Sitter space, Bull. Belg. Math. Soc. Simon Stevin, 17(2010), no. 5, 769-780.
  10. [10] O.C. Schn¨urer, The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds, Math. Z., 242(2002), no. 1, 159-181.
  11. [11] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math., 92(1970), no. 1, 145-173.
  12. [12] S. Shu, Complete spacelike hypersurfaces in a de Sitter space, Bull. Austral Math. Soc., 73(2006), no. 1, 9-16.
  13. [13] G. Wei, Complete hypersurfaces with constant mean curvature in a unit sphere, Monatsh. Math., 149(2006), no. 3, 251-258.
DOI: https://doi.org/10.2478/v10309-012-0026-3 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 387 - 406
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2013 Junfeng Chen, Shichang Shu, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.