Have a personal or library account? Click to login
Several properties on quasi-class a operators Cover

References

  1. [1] A. Aluthge, D. Wang, An operator inequality which implies paranormality. Math. Ineq. Appl. 2 (1) (1999), 113-119. 10.7153/mia-02-09
  2. [2] A. Aluthge, D. Wang, w-hyponormal operators. Integral Equation Operator Theory, 36 (2000), 1-10. 10.1007/BF01236285
  3. [3] M. Ch¯o, T. Yamazaki, An operator transform from class A to the class of hyponormal operators and its application. Integral Equation operator Theory 53 (4) (2005), 497-508. 10.1007/s00020-004-1332-6
  4. [4] B. P. Duggal, I. H. Jeon and I. H. Kim , OnWeyl’s theorem for quasi-class A operators. J. Korean Math. Soc., 43 (4) (2006), 899-909. 10.4134/JKMS.2006.43.4.899
  5. [5] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes. Sci. math. 1 (1998), 389-403.
  6. [6] M. Ito, Several Properties On Class A including p − hyponormal and log-hyponormal operators. Math. Ineq. Appl. 2 (4)(1999), 569-578. 10.7153/mia-02-48
  7. [7] I. H. Jeon, I. H. Kim, On operators satisfying T*|T2|T ≥ T*|T|2T*. Linear Alg. Appl. 418 (2006), 854-862. 10.1016/j.laa.2006.02.040
  8. [8] I. H. Jeon, J.I. Lee and A. Uchiyama, On p-quasihyponormal operators and quasisimilarity. Math. Ineq. App. 6 (2) (2003), 309-315. 10.7153/mia-06-29
  9. [9] I.H. Kim, On (p,k)-quasihyponormal operators. Math. Ineq. Appl. 4 (2004), 169-178.
  10. [10] A. Uchiyama, Weyl’s theorem for Class A operators. Math. Ineq. App. 4 (1) (2001), 143-150. 10.7153/mia-04-11
DOI: https://doi.org/10.2478/v10309-012-0023-6 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 345 - 354
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2013 M.H.M. Rashid, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.