[3] R.E. Bruck, A strongly convergent iterative method for the solution of 0 ∈ Ux for a maximal monotone operator U in Hilbert space, J. Math. Appl. Anal. 48 (1974) 114-126. 10.1016/0022-247X(74)90219-4
[4] R.E. Bruck, G.B. Passty, Almost convergence of the infinite product of resolvents in Banach spaces, Nonlinear Anal. 3 (1979) 279-282. 10.1016/0362-546X(79)90083-X
[8] L.C. Ceng, S.Y.Wu, J.C. Yao, New accuracy criteria for modified approx- imate proximal point algorithms in Hilbert spaces, Taiwanese J. Math. 12 (2008) 1691-1705.
[10] S. Kamimura, W. Takahashi, Weak and strong convergence of solutions to accretive operator inclusions and Applications, Set-Valued Anal. 8 (2000) 361-374. 10.1023/A:1026592623460
[12] L.S. Liu, Ishikawa and Mann iterative process with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995) 114-125. 10.1006/jmaa.1995.1289
[13] Z. Opial, Weak convergence of the sequence of successive a pproximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591-597. 10.1090/S0002-9904-1967-11761-0
[16] X. Qin, Y. Su, Approximation of a zero point of accretive operator in Banach spaces, J. Math. Anal. Appl. 329 (2007) 415-424. 10.1016/j.jmaa.2006.06.067
[20] S. Reich, Weak convergence theorems for resolvents of accretive operators in Banach space, J. Math. Anal. Appl. 67 (1979) 274-276. 10.1016/0022-247X(79)90024-6
[21] S. Reich, Strong convergence theorems for resolvents of accretive opera- tors in Banach spaces, J. Math. Anal. Appl. 75 (1980) 287-292. 10.1016/0022-247X(80)90323-6
[23] W. Takahashi, Y. Ueda, On Reich’s strong convergence theorems for re- solvents of accretive operators, J. Math. Anal. Appl. 104 (1984) 546-553. 10.1016/0022-247X(84)90019-2
[24] W. Takahashi, Viscosity approximation methods for resolvents of acretive operators in Banach space, J. Fixed Point Theory Appl. 1 (2007) 135-147. 10.1007/s11784-006-0004-3
[27] H. Zhou, Remarks on the approximation methods for nonlinear operator equations of the m-accretive type, Nonlinear Anal. 42 (2000) 63-69. 10.1016/S0362-546X(99)00135-2