[1] H. G. Feichtinger, Banach spaces of distributions of Wiener’s type and interpolation. Functional analysis and approximation (Oberwolfach, 1980), pp. 153-165, Internat. Ser. Numer. Math., 60, Birkhäuser, Basel-Boston, Mass., 1981.10.1007/978-3-0348-9369-5_16
[2] H. G. Feichtinger, Modulation spaces on locally compact Abelian groups, in Proc. Internat. Conf. on Wavelets and Applications (Chennai, 2002), R. Radha, M. Krishna, S. Thangavelu (eds.), New Delhi Allied Publishers, 2003, p.1-56. (Reprint of the 1983 technical report.)
[5] H. G. Feichtinger and G. Narimani, Fourier multipliers of classical modulation spaces, Appl. Comput. Harmon. Anal. 21 (2006), 349-359.10.1016/j.acha.2006.04.010
[9] C. Heil, J. Ramanathan and P. Topiwala, Singular values of compact pseudodifferential operators, J. Funct. Anal., 150 (1997), 426-452.10.1006/jfan.1997.3127
[10] H. Koch and W. Sickel, Pointwise multipliers of Besov spaces of smoothness zero and spaces of continuous functions, Rev. Mat. Iberoamericana, 18 (2002), 587-626.10.4171/RMI/329
[11] V. G. Maz’ya and T. O. Shaposhnikova, Theory of Sobolev multipliers. With applications to differential and integral operators, Grundlehren der Mathematischen Wissenschaften, 337. Springer-Verlag, Berlin, 2009.
[12] K. A. Okoudjou, Embeddings of some classical Banach spaces into modulation spaces, Proc. Amer. Math. Soc., 132 (2004), 1639-1647.10.1090/S0002-9939-04-07401-5
[16] J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus-I, J. Funct. Anal., 207 (2004), 399-429.10.1016/j.jfa.2003.10.003