Have a personal or library account? Click to login
Smooth pointwise multipliers of modulation spaces Cover

References

  1. [1] H. G. Feichtinger, Banach spaces of distributions of Wiener’s type and interpolation. Functional analysis and approximation (Oberwolfach, 1980), pp. 153-165, Internat. Ser. Numer. Math., 60, Birkhäuser, Basel-Boston, Mass., 1981.10.1007/978-3-0348-9369-5_16
  2. [2] H. G. Feichtinger, Modulation spaces on locally compact Abelian groups, in Proc. Internat. Conf. on Wavelets and Applications (Chennai, 2002), R. Radha, M. Krishna, S. Thangavelu (eds.), New Delhi Allied Publishers, 2003, p.1-56. (Reprint of the 1983 technical report.)
  3. [3] H. G. Feichtinger, Generalized amalgams, with applications to Fourier transform, Canad. J. Math. 42(3) (1990), 395-409.10.4153/CJM-1990-022-6
  4. [4] H. G. Feichtinger, Modulation Spaces: Looking Back and Ahead, Sampl. Theory Signal Image Process., 5(2) (2006), 109-140.10.1007/BF03549447
  5. [5] H. G. Feichtinger and G. Narimani, Fourier multipliers of classical modulation spaces, Appl. Comput. Harmon. Anal. 21 (2006), 349-359.10.1016/j.acha.2006.04.010
  6. [6] K. Gröchenig, Foundations of time-frequency analysis, Applied and Numerical Harmonic Analysis. Birkh¨auser Boston, Inc., Boston, MA, 2001.10.1007/978-1-4612-0003-1
  7. [7] K. Gröchenig, Time-frequency analysis of Sjöstrands class, Rev. Mat. Iberoamericana, 22 (2006), 703-724.10.4171/RMI/471
  8. [8] K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators, Integr. equ. oper. theory, 34(4) (1999), 439-457.10.1007/BF01272884
  9. [9] C. Heil, J. Ramanathan and P. Topiwala, Singular values of compact pseudodifferential operators, J. Funct. Anal., 150 (1997), 426-452.10.1006/jfan.1997.3127
  10. [10] H. Koch and W. Sickel, Pointwise multipliers of Besov spaces of smoothness zero and spaces of continuous functions, Rev. Mat. Iberoamericana, 18 (2002), 587-626.10.4171/RMI/329
  11. [11] V. G. Maz’ya and T. O. Shaposhnikova, Theory of Sobolev multipliers. With applications to differential and integral operators, Grundlehren der Mathematischen Wissenschaften, 337. Springer-Verlag, Berlin, 2009.
  12. [12] K. A. Okoudjou, Embeddings of some classical Banach spaces into modulation spaces, Proc. Amer. Math. Soc., 132 (2004), 1639-1647.10.1090/S0002-9939-04-07401-5
  13. [13] K. A. Okoudjou, A Beurling-Helson type theorem for modulation spaces, J. Funct. Spaces Appl., 7(1) (2009), 33-41.10.1155/2009/956891
  14. [14] J. Sj¨ostrand, An algebra of pseudodifferential operators, Math. Res. Lett. 1(2) (1994), 185-192.10.4310/MRL.1994.v1.n2.a6
  15. [15] R. S. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. and Mech., 16(9) (1967), 1031-1060.10.1512/iumj.1967.16.16068
  16. [16] J. Toft, Continuity properties for modulation spaces, with applications to pseudo-differential calculus-I, J. Funct. Anal., 207 (2004), 399-429.10.1016/j.jfa.2003.10.003
  17. [17] H. Triebel, Theory of function spaces. Monographs in Mathematics, 78. Birkhäuser Verlag, Basel, 1983.10.1007/978-3-0346-0416-1
  18. [18] H. Triebel, Theory of function spaces II, Monographs in Mathematics, 84. Birkhäuser Verlag, Basel, 1992. 10.1007/978-3-0346-0419-2
DOI: https://doi.org/10.2478/v10309-012-0021-8 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 317 - 328
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2013 Ghassem Narimani, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.