Have a personal or library account? Click to login
Fixed point theorems for expanding mappings in partial metric spaces Cover
By:
Open Access
|May 2013

References

  1. [1] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metricspaces, Topology Appl. 157(18) (2010), 2778-2785.10.1016/j.topol.2010.08.017
  2. [2] M. Bukatin, J. Scott, Towards computing distances between programs viaScott domains, in: Logical Foundations of Computer Sicence, Lecture Notes in Computer Science (eds. S. Adian and A. Nerode), vol. 1234, Springer (Berlin, 1997), 33-43.
  3. [3] M. Bukatin, S. Shorina, Partial metrics and co-continuous valuations, in:Foundations of Software Science and Computation Structures, Lecture Notes in Computer Science (ed. M. Nivat), vol. 1378, Springer (Berlin, 1998), 33-43.
  4. [4] P. Z. Daffer, H. Kaneko, On expansive mappings, Math. Japonica. 37 (1992), 733-735.
  5. [5] P. Fletcher, W. Lindgren, Quasi-Uniform Spaces, Marcel Dekker, New York, 1982.
  6. [6] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures. 7 (1999), 71-83.10.1023/A:1008684018933
  7. [7] G. Jungck, Commonfixed points for noncontinuous nonself mappings onnonmetric spaces, Far East J. Math. Sci. 4 (2) (1996), 199-212.
  8. [8] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
  9. [9] H. Kunzi, Nonsymmetric distances and their associated topologies: Aboutthe origins of basic ideas in the area of asymmetric topology, in: Handbook of the History of General Topology (eds. C.E. Aull and R. Lowen), vol. 3, Kluwer Acad. Publ. (Dordrecht, 2001), 853-968.10.1007/978-94-017-0470-0_3
  10. [10] S. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728 (1994), 183-197.
  11. [11] S. Oltra, O. Valero, Banach's fixed point theorem for partial metric spaces, Rend. Ist. Mat. Univ. Trieste. 36 (2004), 17-26.
  12. [12] S. O’Neill, Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 806 (1996), 304-315.
  13. [13] B. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.10.1090/S0002-9947-1977-0433430-4
  14. [14] S. Romaguera, M. Schellekens, Duality and quasi-normability for complexity spaces, Appl. Gen. Topol. 3 (2002), 91-112.10.4995/agt.2002.2116
  15. [15] S. Romaguera, M. Schellekens, Weightable quasi-metric semigroups andsemilattices, In: Proc. MFCSIT2000, Electronic Notes in Theoretical Computer Science. 40 (2003), 12 pages.10.1016/S1571-0661(05)80061-1
  16. [16] M. Schellekens, A characterization of partial metrizability: domains arequantifiable, Theoret. Comput. Sci. 305 (2003), 409-432.10.1016/S0304-3975(02)00705-3
  17. [17] M. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315 (2004), 135-149.10.1016/j.tcs.2003.11.016
  18. [18] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol. 6 (2) (2005), 229-240.10.4995/agt.2005.1957
  19. [19] S. Z. Wang, B. Y. Li, Z. M. Gao, K. Iseki, Some fixed point theorems forexpansion mappings, Math. Japonica. 29 (1984), 631-636.
  20. [20] X. Wen, X. J. Huang, Common fixed point theorem under contractions inpartial metric spaces, J. Comput. Anal. Appl. 13(3) (2011), 583-589. 10.1186/1687-1812-2011-83
DOI: https://doi.org/10.2478/v10309-012-0014-7 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 213 - 224
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2013 Xianjiu Huang, Chuanxi Zhu, Xi Wen, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.