[1] I. Altun, F. Sola, H. Simsek, Generalized contractions on partial metricspaces, Topology Appl. 157(18) (2010), 2778-2785.10.1016/j.topol.2010.08.017
[2] M. Bukatin, J. Scott, Towards computing distances between programs viaScott domains, in: Logical Foundations of Computer Sicence, Lecture Notes in Computer Science (eds. S. Adian and A. Nerode), vol. 1234, Springer (Berlin, 1997), 33-43.
[3] M. Bukatin, S. Shorina, Partial metrics and co-continuous valuations, in:Foundations of Software Science and Computation Structures, Lecture Notes in Computer Science (ed. M. Nivat), vol. 1378, Springer (Berlin, 1998), 33-43.
[9] H. Kunzi, Nonsymmetric distances and their associated topologies: Aboutthe origins of basic ideas in the area of asymmetric topology, in: Handbook of the History of General Topology (eds. C.E. Aull and R. Lowen), vol. 3, Kluwer Acad. Publ. (Dordrecht, 2001), 853-968.10.1007/978-94-017-0470-0_3
[10] S. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 728 (1994), 183-197.
[12] S. O’Neill, Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications. Ann. New York Acad. Sci. 806 (1996), 304-315.
[13] B. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977), 257-290.10.1090/S0002-9947-1977-0433430-4
[17] M. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315 (2004), 135-149.10.1016/j.tcs.2003.11.016
[20] X. Wen, X. J. Huang, Common fixed point theorem under contractions inpartial metric spaces, J. Comput. Anal. Appl. 13(3) (2011), 583-589. 10.1186/1687-1812-2011-83