[4] L. Capogna, D. Danielli, S. Pauls and J. Tyson, An introduction to theHeisenberg group and the sub-Riemannian isoperimetric problem, Progr. Math., 259, Birkhauser, Basel, 2007.
[6] G. Di Fazio, D.K. Palagachev and M.A. Ragusa, Global Morrey regularityof strong solutions to the Dirichlet problem for elliptic equations withdiscontinuous coefficients, J. Funct. Anal. 166 (1999), 179-196. 10.1006/jfan.1999.3425
[10] G. Furioli, C. Melzi, and A. Veneruso, Littlewood-Paley decompositionsand Besov spaces on Lie groups of polynomial growth. Math. Nachr. 279 (2006), no. 9-10, 1028-1040.
[11] N. Garofalo and E. Lanconelli, Frequency functions on the Heisenberggroup, the uncertainty principle and unique continuation. Atin. Inst. Fourier, Grenoble, 40 (1990), 313-356. 10.5802/aif.1215
[12] V.S. Guliyev, Integral operators on function spaces on the homogeneousgroups and on domains in Rn, Doctor of Sciencies, Moscow, Mat. Inst. Steklova, (1994, Russian), 1-329.
[14] V.S. Guliyev, Function spaces, integral operators and two weighted inequalitieson homogeneous groups. Some applications. Baku, (1999, Russian), 1-332.
[15] V.S. Guliyev, Boundedness of the maximal, potential and singular operatorsin the generalized Morrey spaces, J. Inequal. Appl., 2009, Art. ID 503948, 20 pp. 10.1155/2009/503948
[17] D.S Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberggroup. I., J. Funct. Anal., 43 (1981), 97142. 10.1016/0022-1236(81)90040-9
[18] D.S Jerison, The Dirichlet problem for the Kohn Laplacian on the Heisenberggroup. II., J. Funct. Anal., 43 (1981), 224257. 10.1016/0022-1236(81)90031-8
[23] C. Perez, Two weighted norm inequalities for Riesz potentials and uniformLp-weighted Sobolev inequalities, Indiana Univ. Math. J. 39 (1990), 3144.
[24] A. Ruiz and L. Vega, Unique continuation for Schrödinger operators withpotential in Morrey spaces, Publ. Mat. 35 (1991), 291-298. 10.5565/PUBLMAT_35191_15