[5] V. Balopoulos, A. G. Hatzimichailidis and B. K. Papadopoulos, Distance and Similarity measures for fuzzy operators, Inform. Sci., 177 (2007), 2336-2348.10.1016/j.ins.2007.01.005
[11] A. Ghaffari and A. Alinejad, Stabilities of cubic Mappings in Fuzzy Normed Spaces, Advances in Difference Equations, vol. 2010 (2010), 15 pages.10.1155/2010/150873
[14] K. W. Jun and H. M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274 (2002), 867-878.10.1016/S0022-247X(02)00415-8
[15] K. W. Jun, H. M. Kim and I.-S. Chang, On the Hyers-Ulam stability of an Euler-Lagrang type cubic functional equation, J. Comput. Anal. Appl., 7 (2005), 21-33.
[20] S. V. Krishna and K. K. M. Sarma, Seperation of fuzzy normed linear spaces, Fuzzy Sets and Systems, 63 (1994), 207-217.10.1016/0165-0114(94)90351-4
[22] Th. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300. 10.1090/S0002-9939-1978-0507327-1
[29] J. Z. Xiao and X. H. Zhu, Fuzzy normed space of operators and its completeness, Fuzzy Sets and Systems 133 (2003), 389-399.10.1016/S0165-0114(02)00274-9
[30] T. Z. Xu, Generalized Ulam-Hyers stability of a general mixed AQCQ functional equation in multi-Banach spaces: A fixed point approach, European Journal of pure and Applied Mathematics, vol. 3 (2010), 1032-1047.
[31] T. Z. Xu, J. M. Rassias and W. X. Xu, Stability of a general mixed additive-cubic functional equationin non-Archimedean fuzzy normed spaces, Journal of Mathematical Physics, vol. 51 (2010), 19 pages.10.1063/1.3482073
[32] T. Z. Xu, J. M. Rassias and W. X. Xu, A fixed point approach to the stability of a general mixed additive-cubic functional equation in quasifuzzy normed spaces, International Journal of Physical Sciences, 6 (2011), 313-324.
[33] T. Z. Xu, J. M. Rassias and W. X. Xu, Intuitionistic fuzzy stability of ageneral mixed additive-cubic equation, Journal of Mathematical Physics, vol. 51 (2010), 21 pages.10.1063/1.3431968
[34] T. Z. Xu, J. M. Rassias and W. X. Xu, A fixed point approach to the stability of a general mixed AQCQ-functional equation in non-Archimedean normed spaces, Discrete Dynamics in Nature and Society, vol. 2010 (2010), 24 pages. 10.1155/2010/812545
[35] T. Z. Xu, J. M. Rassias and W. X. Xu, On the stability of a general mixedadditive-cubic functional equation in random normed spaces, Journal of Inequalities and Applications, Vol. 2010, Article ID 328473, 16 pages, 2010.