[1] M. T. K. Abbassi, Note on the classification theorems of g-natural metricson the tangent bundle of a Riemannian manifold (M, g), Comment. Math. Univ. Carolin., 45 (2004), no. 4, 591-596.
[2] M. T. K. Abbassi, M. Sarih, On some hereditary properties of Riemanniang-natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl., 22 (2005), no. 1, 19-47.
[4] M. T. K. Abbassi, M. Sarih, Killing vector fields on tangent bundleswith Cheeger-Gromoll metric, Tsukuba J. Math., 27 (2003), 295-306.10.21099/tkbjm/1496164650
[6] M. C. Calvo, G. R. Keilhauer, Tensor fields of type (0,2) on the tangent bundle of a Riemannian Manifold, Geom. Dedicata, 71 (1998), no.2, 209-219.
[9] A. Gezer, On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric, Proc. Indian Acad. Sci. Math. Sci., 119 (2009), no. 3, 345-350.
[11] I. Hasegawa, K. Yamauchi, Infinitesimal conformal transformations on tangent bundles with the lift metric I+II, Sci. Math. Jpn., 57 (2003), no.1, 129-137.
[13] O. Kowalski, M. Sekizawa, Natural transformation of Riemannian metrics on manifolds to metrics on tangent bundles-a classification- , Bull. Tokyo Gakugei Univ., 40 (1988), no. 4, 1-29.
[14] M. I. Munteanu, Some aspects on the geometry of the tangent bundles and tangent sphere bundles of a Riemannian manifold, Mediterr. J. Math., 5 (2008), no.1, 43-59.
[16] V. Oproiu, Some classes of general natural almost Hermitian structures on tangent bundles, . Rev. Roumaine Math. Pures Appl., 48 (2003), no. 5-6, 521-533.
[18] V. Oproiu, N. Papaghiuc, Some new geometric structures of natural lift type on the tangent bundle, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 52 (2009), no. 3, 333-346.
[20] V. Oproiu, N. Papaghiuc, Classes of almost anti-Hermitian structures on the tangent bundle of a Riemannian manifold, An. Stiin. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 50 (2004), no. 1, 175-190.
[21] V. Oproiu, N. Papaghiuc, On the geometry of tangent bundle of a(pseudo-) Riemannian manifold, An. tiin. Univ. Al. I. Cuza Iai. Mat. (N.S.), 44 (1998), no. 1, 67-83.
[22] N. Papaghiuc, Some locally symmetric anti-Hermitian structures on the tangent bundle, An. tiin?. Univ. Al. I. Cuza Iai. Mat. (N.S.), 52 (2006), no. 2, 277-287.
[30] K. Yamauchi, On infinitesimal conformal transformations of the tangent bundles with the metric I+III over Riemannian manifold, Ann Rep. Asahikawa. Med. Coll., 16 (1995), 1-6.
[31] K. Yamauchi, On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds, Ann Rep. Asahikawa. Med. Coll., 15 (1994), 1-10.