Have a personal or library account? Click to login

References

  1. [1] J.P. Aubin Optima and Equilibira: An intorduction to Nonlinear Analysis, Graduate Texts in Mathematics. Springer-Verlag, 1993.10.1007/978-3-662-02959-6
  2. [2] J. M. Borwein and D. Preiss, A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303(1987), 517-527.10.1090/S0002-9947-1987-0902782-7
  3. [3] J. M. Borwein and Q. J. Zhu, Techniques of Variational Analysis,Springer Berlin Heidelberg NewYork,2005
  4. [4] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251. 10.1090/S0002-9947-1976-0394329-4
  5. [5] I. Ekeland, On the variational principle, Journ. Math Anal. App. 47(1974),324-357.10.1016/0022-247X(74)90025-0
  6. [6] I. Ekeland, Nonconvex minimazition problems, Bulletin of A.M.S, Vol.1, No.3, 443-474.10.1090/S0273-0979-1979-14595-6
  7. [7] I. Meghea, Ekeland Variational Principle with Generalizations and Variants, Old City Pubishing, 2009.
  8. [8] Li Yongsin, Sci Shuzhong, A generalization of Ekeland’s ε- variationalprimciple and its Borwein-Preiss variant, J.M.A.T.A. 246(2000), Nr. 1, 308-319.
  9. [9] C.-K. Zhong, On Ekeland’s variational principle and minimax theorem, Journ. Math. Anal. App. 205(1997), 239-250.10.1006/jmaa.1996.5168
  10. [10] C.-K. Zhong, A generalization of Ekeland’s variational principle and aplicationto the study of the realition between the P.S. condition and coercivity Nonl. Anal. T.M.A. 29(1997), 1421-1431.
DOI: https://doi.org/10.2478/v10309-012-0008-5 | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 101 - 112
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2013 Csaba Farkas, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.