[1] I. Bega, A. R. Butt, S. Radojevi, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60,(2010) 1214-1219.
[3] W.S. Due, Some results and generalizations in metric fixed point theory, Nonlinear Analysis,Theory-Methods & Applications Vol. 73, No. 5, pp. 1439-1446, 2010.
[4] Y. Enjouji, M. Nakanishi, T. Suzuki, A generalization of Kannans fixed point theorem Fixed Point Theory and Applications, Article Number 192872, 2010, DOI:10.1155/2009/192872.10.1155/2009/192872
[5] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 1 (136) (2008) 1359-1373.10.1090/S0002-9939-07-09110-1
[9] M.A. Petric, B.G. Zlatanov, Fixed Point Theorems of Kannan Type for Cyclical Contractive Conditions, Proceedings of the Anniversary InternationalConference REMIA 2010, Plovdiv, Bulgaria 187-194.
[11] D. O’Regan , A. Petru,sel Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341 (2008) 1241-1252.10.1016/j.jmaa.2007.11.026
[12] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257-290.10.1090/S0002-9947-1977-0433430-4
[14] M. De la Sen, Linking contractive self-mappings and cyclic Meir-Keeler contractions with Kannan self-mappings, Fixed Point Theory and Applications, Article Number 572057, 2010,DOI: 10.1155/2010/572057.10.1155/2010/572057
[15] J. S. Ume, Existence theorems for generalized distance on complete metric spaces Fixed Point Theory and Applications Article Number 397150, 2010, DOI: 10.1155/2010/397150.10.1155/2010/397150