Have a personal or library account? Click to login
By:
Open Access
|May 2013

References

  1. [1] I. Bega, A. R. Butt, S. Radojevi, The contraction principle for set valued mappings on a metric space with a graph, Comput. Math. Appl. 60,(2010) 1214-1219.
  2. [2] V. Berinde Iterative Approximation of Fixed Points, Springer, 2007.10.1109/SYNASC.2007.49
  3. [3] W.S. Due, Some results and generalizations in metric fixed point theory, Nonlinear Analysis,Theory-Methods & Applications Vol. 73, No. 5, pp. 1439-1446, 2010.
  4. [4] Y. Enjouji, M. Nakanishi, T. Suzuki, A generalization of Kannans fixed point theorem Fixed Point Theory and Applications, Article Number 192872, 2010, DOI:10.1155/2009/192872.10.1155/2009/192872
  5. [5] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc. 1 (136) (2008) 1359-1373.10.1090/S0002-9939-07-09110-1
  6. [6] R. Johnsonbaugh, Discrete Mathematics, Prentice-Hall, Inc., New Jersey, 1997.
  7. [7] R. Kannan, Some results on fixed points- II, Amer.Math. Monthly. 76 (1969) 405-408.
  8. [8] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
  9. [9] M.A. Petric, B.G. Zlatanov, Fixed Point Theorems of Kannan Type for Cyclical Contractive Conditions, Proceedings of the Anniversary InternationalConference REMIA 2010, Plovdiv, Bulgaria 187-194.
  10. [10] A. Petrusel, I.A. Rus, Fixed point theorems in ordered L-spaces, Proc. Amer. Math. Soc. 134(2006), 411-418.10.1090/S0002-9939-05-07982-7
  11. [11] D. O’Regan , A. Petru,sel Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341 (2008) 1241-1252.10.1016/j.jmaa.2007.11.026
  12. [12] B.E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc. 226 (1977) 257-290.10.1090/S0002-9947-1977-0433430-4
  13. [13] I.A. Rus, Generalized Contractions and Applications, Cluj Univ. Press, 2001.
  14. [14] M. De la Sen, Linking contractive self-mappings and cyclic Meir-Keeler contractions with Kannan self-mappings, Fixed Point Theory and Applications, Article Number 572057, 2010,DOI: 10.1155/2010/572057.10.1155/2010/572057
  15. [15] J. S. Ume, Existence theorems for generalized distance on complete metric spaces Fixed Point Theory and Applications Article Number 397150, 2010, DOI: 10.1155/2010/397150. 10.1155/2010/397150
DOI: https://doi.org/10.2478/v10309-012-0003-x | Journal eISSN: 1844-0835 | Journal ISSN: 1224-1784
Language: English
Page range: 31 - 40
Published on: May 17, 2013
Published by: Ovidius University of Constanta
In partnership with: Paradigm Publishing Services
Publication frequency: 3 times per year

© 2013 Florin Bojor, published by Ovidius University of Constanta
This work is licensed under the Creative Commons License.