Have a personal or library account? Click to login
A Strong Law for the Size of Yule M-Oriented Recursive Trees Cover
Open Access
|Apr 2013

References

  1. D. Y. C. Chan, B. D. Hughes, A. S. Leong, W. J. Reed, Stochasticaly evolving networks, Phys. Rev. E, 68 (2003), 24.10.1103/PhysRevE.68.066124
  2. B. Chauvin, T. Klein, J. Marckert, A. Rouault, Martingales and Profile of Binary Search Trees. Electronic Journal of Probability, 10 (2005), 420-435.
  3. R. Dobrow, and R. Smythe, Poisson approximations for functionals of random trees. Random Structures Algorithms, 9 (1996), 79-92.10.1002/(SICI)1098-2418(199608/09)9:1/2<;79::AID-RSA5>3.0.CO;2-8
  4. Q. Feng, C. Su, The structure and distances in Yule recursive trees Random Struct. Algorithms, 31 (2007), 273-287.10.1002/rsa.20183
  5. J. L. Gastwirth, P. K. Bhattacharya, Two probability models of pyramids or chain letter schemes demonstrating that their promotional claims are unreliable. Operations Research, 32 (1984), 527-536.
  6. H. Mahmoud, R. T. Smythe, A survey of recursive trees, Theory Probab. Math. Statist., 51 (1995), 1-27.
  7. S. M. Ross, Stochastic processes, Wiley, New York, 1983.10.1016/B978-0-12-598420-1.50011-8
DOI: https://doi.org/10.2478/v10294-012-0015-1 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 67 - 72
Published on: Apr 13, 2013
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2013 Mehri Javanian, Mohammad Q. Vahidi-Asl, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons License.