Have a personal or library account? Click to login
On a new Theorem Involving Generalized Mellin-Barnes Type of Contour Integral and Srivastava Polynomials Cover

On a new Theorem Involving Generalized Mellin-Barnes Type of Contour Integral and Srivastava Polynomials

By: Praveen Agarwal  
Open Access
|Apr 2013

References

  1. [1] P. Agarwal, On A New Unified Integral Involving Hypergeometric Function, Advances in Computational Mathematics and its Applications,2(1),2012, 239-242.
  2. [2] P.Agarwal and S.Jain, On unified finite integrals involving a multivariable polynomial and a generalized Mellin Barnes type of contour integral having general argument, Nat. Acad. Sci. Lett., 32(8 & 9), (2009).
  3. [3] P. Agarwal, On multiple integral relations involving generalized Mellin-Barnes type of contour integral, Tamsui Oxf. J. Math. Sci. 27 (4): (2011), 449-462.
  4. [4] P. Agarwal, New Unified Integral Involving a Srivastava Polynomials and HFunction, Journal of Fractional Calculus and Applications, 3(3), (2012), 1- 7.
  5. [5] P. Agarwal, On New Unified Integrals involving Appell Series , Advances in Mechanical Engineering and its Applications 2(1),(2012),115-120.
  6. [6]B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes - integrals, Compositio Math., 15(1963), 239-341.
  7. [7] R. G. Buschman and H. M. Srivastava, The _H -function associated with a certain class of Feynman integrals, J. Phys. A : Math. Gen., 23(1990), 4707-4710.10.1088/0305-4470/23/20/030
  8. [8] V. B. L. Chaurasia, A theorem concerning the multivariable H-function, Bull. Inst. Math. Acad. Sinica, 13(2)(1985), 193-196.
  9. [9] Kantesh Gupta and Vandana Agrawal, Applications of unified integral formulae involving the product of I-function and general polynomials, Journal of the Indian Academy of Mathmatics, Indore, 32(1), (2010), 121-130
  10. [10] K. C. Gupta and R. C. Soni , New properties of a generalization of hypergeometric series associated with Feynman integrals, Kyungpook Math. J., 41(1)(2001), 97-104.
  11. [11] K. C. Gupta and R. C. Soni, On a basic integral formula involving the product of the H-function and Foxs H-function, J. Raj. Acad. Phy. Sci., 4 no.3 (2006), 157-164.
  12. [12] A. A. Inayat-Hussian, New properties of hypergeometric series derivable from Feynman integrals: I. Transformation and reduction formulae, J. Phys. A : Math. Gen., 20(1987), 4109-4117.
  13. [13] A. A. Inayat-Hussian, New properties of hypergeometric series derivable from Feynman integrals : II. A generalization of the H-function, J. Phys. A : Math. Gen., 20(1987),4119-4128.
  14. [14] A. K. Rathie, A new generalization of generalized hypergeometric functions, Matematiche (Catania), 52(1997), 297-310.
  15. [15] L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, (1966).10.2307/2003571
  16. [16] H. M. Srivastava, A contour integral involving Fox's H-function, Indian J. Math., 14(1972), 1-6.
  17. [17] H. M. Srivastava and N. P. Singh, The integration of certain products of the multivariable H-function with a general class of polynomials, Rend. Circ. Mat. Palermo Ser. 2, 32(1983), 157-187.10.1007/BF02844828
DOI: https://doi.org/10.2478/v10294-012-0012-4 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 29 - 35
Published on: Apr 13, 2013
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2013 Praveen Agarwal, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons License.