Have a personal or library account? Click to login
Minimize Traffic Congestion: An Application of Maximum Flow in Dynamic Networks Cover

Minimize Traffic Congestion: An Application of Maximum Flow in Dynamic Networks

Open Access
|Aug 2012

References

  1. Ahuja, R., Magnati, T., Orlin, J., Network Flows. Prentice-Hall, Englewood Cliffs, 1993.
  2. Aronson, J., A survey of dynamic network flows. Ann. Oper. Res., vol. 20, 1989, pp. 1-66. 395 M. A. Fonoberova, D. D. Lozovanu.10.1007/BF02216922
  3. Aumann, Y. And Rabani, Y. 1998. An O(log k) approximate min-cut max-flow theorem and approximation algorithm. SIAM J. Comput. 27, 1, 291-301.
  4. Aronson, J. E., A survey of dynamic network flows, Annals of Operations Research 20 (1989) 1-66.10.1007/BF02216922
  5. Ford, L., Fulkerson, D., Flows in Networks. Princeton University Press, Princeton, NJ, 1962.
  6. Ben-Akiva, M., A. de Palma and I. Kaysi (1991). Dynamic network models and driver information systems. Transportation Research A, 25A(5), 251-266.10.1016/0191-2607(91)90142-D
  7. Dahlgren Lab of U. S. Navy, Personal communications 2001.
  8. Ford, L., Fulkerson, D., Constructing maximal dynamic flows from static flows. Operation Res., vol. 6, 1958, p. 419-433.10.1287/opre.6.3.419
  9. Fleisher, L., Skutella, M., The quickest multi-commodity flow problem. Integer programming and combinatorial optimization, Springer, Berlin, 2002, p. 36-53.10.1007/3-540-47867-1_4
  10. Fleischer, L., Universally Maximum Flow with Piecewise-Constant Capacities. Networks, vol. 38, no. 3, 2001, pp. 115-125.10.1002/net.1030
  11. G. Bretti, R. Natalini, and B. Piccoli, "Numerical algorithms for simulations of a traffic model on road networks", J. Comput. Appl. Math., 2007, 210, (1-2), pp. 71-77.10.1016/j.cam.2006.10.057
  12. Goldberg, A., Tarjan, R., A New Approach to the Maximum-Flow Problem. Journal of the Association for Computing Machinery, vol. 35, no. 4, 1988, pp. 921-940.10.1145/48014.61051
  13. Garg, N., Vazarani, V., And Yannakakis, M. 1996. Approximate max-flow min-(multi) cut theorems and their applications. SIAM J. Comput. 25, 235-251.
  14. Hoppe, B. and Tardos, E., The quickest transsipment problem, Mathematics of Operations Research 25 (2000) 36-62.10.1287/moor.25.1.36.15211
  15. Hoppe, B., Tardos, E., The quickest transshipment problem. Mathematics of Operations Research, vol. 25, 2000, p. 36-62.10.1287/moor.25.1.36.15211
  16. Kohler, E. and Skutella, M., Flows over time with load-dependent transit times, Proceedings of SODA'02 (2002) 174-183.
  17. Kumar, S., Gupta, P., An Incremental Algorithm for the Maximum Flow Problem. Journal of Mathematical Modeling and Algorithms. vol. 2, 2003, pp. 1-16.
  18. Leighton, F. T., Makedon, F., Plotkin, S., Stein, C., Tardos, E., And Tragoudas, S. 1992. Fast approximation algorithms for multi-commodity flow problems. J. Comput. Syst. Sci. 50, 228-243.
  19. Lindsey, R. and E. T. Verhoef (2000). Congestion modeling. Forthcoming in: Handbook of Transport Modeling, Vol. 1. (D. A. Hensher and K. J. Button, eds.), Elsevier Science, Oxford.
  20. Lozovanu, D., Stratila, D., Optimal flow in dynamic networks with nonlinear cost functions on edges. Analysis and optimization of differential systems. (Edited by V. Barbu, I. Lesiencko), ISBN 1-4020-7439-5. Klnwer Academic Publissers, 2003, p. 247-258.10.1007/978-0-387-35690-7_25
  21. Lozovanu, D., Stratila, D., The minimum-cost flow problem on dynamic networks and algorithm for its solving. Bul. Acad. Stiinte Repub. Mold., Mat., vol. 3, 2001, p. 38-56.
  22. Laih, C-H. (1994). Queuing at a bottleneck with single- and multi-step tolls. Transportation Research A, 28A(3), 197-208.
  23. Maria A. Fonoberova, Dmitrii D. Lozovanu, "The maximum flow in dynamic networks", Computer Science Journal of Moldova, vol.12, no.3 (36), 2004.
  24. Mazzoni, G., Pallottino, S., Scutella, M., The maximum flow problem: A maxpreflow approach. European Journal of Operational Research, vol. 53, 1991, pp. 257-278.10.1016/0377-2217(91)90060-9
  25. Minieka, E., Dynamic network flows with arc changes, Networks 4 (1974) 255-265.10.1002/net.3230040305
  26. Powell, W. B., Jaillet, P. and Odoni, A., Stochastic and dynamic networks and routing, In: Network.
  27. Routing, Vol. 8 (1995) of Handbooks in Operations Research and Management Science, Chapter 3 141-295.
  28. Shahrokhi, F. And Matula, D. W. 1990. The maximum concurrent flow problem. J. ACM 37, 318-334.
  29. Wikipedia, "Traffic Congestion", Available: http://en.wikipedia.org/wiki/Traffic_congestion
DOI: https://doi.org/10.2478/v10294-012-0007-1 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 63 - 74
Published on: Aug 13, 2012
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2012 K. Kaanodiya, Mohd Rizwanullah, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons License.

Volume 8 (2012): Issue 1 (May 2012)