Have a personal or library account? Click to login

Diagonal Scaling of Ill-Conditioned Matrixes by Genetic Algorithm

Open Access
|Aug 2012

References

  1. F. L. BAUER, (1963), Optimally scaled matrices, Numerische Mathematik, 5, 7387.10.1007/BF01385880
  2. F. L. BAUER, (1969), Remarks on optimally scaled matrices, Numerische Mathematik, 13, 13.10.1007/BF02165268
  3. D. R. Braatz, Manfred Morari, (1994), Minimizing the Euclidean Condition Number. SIAM Journal on Control and Optimization, 32(6):17631768.10.1137/S0363012992238680
  4. P. A. Businger, (1968), Matrices Which Can Be Optimally Scaled. Numerische Mathematik, 12:346348.10.1007/BF02162515
  5. Chin-Chieh Chiang, John P. Chandler, An Approximate Equation for the Condition Numbers of Well-scaled Matrices Proceedings of The 2008 IAJC-IJME International Conference.
  6. A. Chutarat, (2001), Experience of Light: The Use of an Inverse Method and a Genetic Algorithm in Daylighting Design, Ph.D. Thesis, Dept. of Architecture, MIT, Cambridge, MA.
  7. A. R. CURTIS AND J. K. REID, (1972), On the automatic scaling of matrices for Gaussian elimination, J. Inst. Maths. Applics., 10, 118124.
  8. I. S. DUFF, A. M. ERISMAN, AND J. K. REID, (1986), Direct Methods for Sparse Matrices, Oxford University Press, London.
  9. I. S. DUFF AND J. KOSTER, (1999), On algorithms for permuting large entries to the diagonal of a sparse matrix, Tech. Rep. RAL-TR-1999-030, Rutherford Appleton Laboratory. SIAM Journal on Matrix Analysis and Applications.10.1137/S0895479897317661
  10. Gero, J., and Radford, A. (1978), A Dynamic Programming Approach to the Optimum Lighting Problem, Eng. Optimize. 3(2), pp. 71-82.
  11. HSL, (2000), A collection of Fortran codes for large scale scientific computation. http://www.cse.clrc.ac.uk/Activity/HSL
  12. D. Ruiz, A scaling algorithm to equilibrate both rows and columns norms in matrices, Tech. Rep. RAL-TR-2001-034, Rutherford Appleton Laboratory, 2001.
  13. R. Rump, Optimal scaling for p-norms and componentwise distance to singularity, IMA J. Numer. Anal. 23 (2003), pp. 19.
  14. M. H. SCHNEIDER AND S. ZENIOS, (1990), A comparative study of algorithms for matrix balancing, Operations Research, 38, 439455.10.1287/opre.38.3.439
  15. A. VAN DER SLUIS, (1969), Condition Numbers and Equilibration of Matrices, Numer. Math., 14, 1423.
  16. Watson, G. A. (1991), An Algorithm for Optimal 2 Scaling of Matrices. IMA J. Numer. Anal., 11:481492.
DOI: https://doi.org/10.2478/v10294-012-0005-3 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 49 - 53
Published on: Aug 13, 2012
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2012 Behrouz Vajargah, Mojtaba Moradi, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons License.

Volume 8 (2012): Issue 1 (May 2012)