Have a personal or library account? Click to login
A New Information Inequality and Its Application in Establishing Relation Among Various f-Divergence Measures Cover

A New Information Inequality and Its Application in Establishing Relation Among Various f-Divergence Measures

By: K. Jain and  Ram Saraswat  
Open Access
|Aug 2012

References

  1. Beran R., Minimum Hellinger distance estimates for parametric models Ann. Statist.5 (1977), 445-46310.1214/aos/1176343842
  2. Bhattacharya A., Some analogues to amount of information and their uses in statistical estimation, Sankhya8 (1946) 1-14
  3. Burbea J., and C. R. Rao, On Convexity of Some Divergence measures based on entropy functions, IEEE Transe.on.inform.theory, IT-28 (1982),489-49510.1109/TIT.1982.1056497
  4. Csiszar I. Information measure, A critical servey. Trans.7th prague conf.on info. Th. Statist. Decius. Funct, Random Processes and 8th European meeting of statist Volume B. Acadmia Prague, 1978, PP-73-86
  5. Csiszar I., Information-type measures of difference of probability functions and indirect observations. studia Sci. Math. hunger. 2(1961). 299-318
  6. Dragomir S. S., Bounds of f-divergences under likelihood Ratio Constraints No.3, 205-223, 48(2003)10.1023/A:1026054413327
  7. Dragomir S. S., V.gluscevic and C. E. M. pearce, approximation for the csiszar f -divergence via mid-point inequalities, in inequality theory and applications- Y. J. Cho, J. K. Kim and S. S. dragomir(Eds), nova science publishers, inc., Huntington, new York, vol1, 2001, pp.139-154.
  8. Dragomir S. S., J. Sunde and C. Buse, New Inequalities for Jeffreys Divergence measure, Tamusi Oxford Journal of Mathematical Sciences, 16(2)(2000), 295-309
  9. Jain K. C. and A. Srivastava, On Symmetric Information Divergence Measures of Csiszar's f-Divergence Class, Journal of Applied Mathematics, Statistics and Informatics (JAMSI), 3(1)(2007), 85-102
  10. Kullback S., R.A Leibler: On information and sufficiency. Ann. Nath. Statistics 22(1951),79-8610.1214/aoms/1177729694
  11. Pearson K., On the criterion that a give system of deviations from the probable in the case of correlated system of variables in such that it can be reasonable supposed to have arisen from random sampling, Phil. Mag., 50(1900), 157-172.10.1080/14786440009463897
  12. Taneja I. J. and P. Kumar, Relative information of type s, Csiszar f-divergence and Information inequalities, Information Sciences, 166 (1-6)(2004), 105-125 Also in: http:// rgmia.vu.edu.au, RGMIA Research Report Collection. 6(3)(2003). Article12 http://rgmia.vu.edu.au
  13. Taneja I. J., New Developments in generalized information measures, Chapter in: Advances in imaging and Electron Physics, Ed. P. W. Hawkes 91 (1995), 37-135.
  14. Taneja I. J., Pranesh Kumar, Generalized non-symmetric divergence measures and inequalities.
  15. Topse F., Some inequalities for information divergence and related measures of discrimination. Res. Coll. RGMIA2 (1999), 85-98.
  16. Sibson R., Information Radius, Z, Wahrs. undverw. geb.(14)(1969), 149-16010.1007/BF00537520
DOI: https://doi.org/10.2478/v10294-012-0002-6 | Journal eISSN: 1339-0015 | Journal ISSN: 1336-9180
Language: English
Page range: 17 - 32
Published on: Aug 13, 2012
Published by: University of Ss. Cyril and Methodius in Trnava
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2012 K. Jain, Ram Saraswat, published by University of Ss. Cyril and Methodius in Trnava
This work is licensed under the Creative Commons License.

Volume 8 (2012): Issue 1 (May 2012)