Have a personal or library account? Click to login
Model-based Utility Functions Cover

References

  1. Alamino, R., and Nestor, C. 2006. Online learning in discrete hidden Markov models. In: Djafari, A. M. (ed) Proc. AIP Conf, vol. 872(1), pp. 187-194.
  2. Baum, L. E., Petrie, T., Soules, G., and Weiss, N. 1970. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist., 41(1), pp. 164-171.
  3. Bishop, C. 2006. Pattern Recognition and Machine Learning. Springer, Berlin.
  4. Bostrom, N. 2003. Ethical issues in advanced artificial intelligence. In: Smit, I. et al (eds) Cognitive, Emotive and Ethical Aspects of Decision Making in Humans and in Artificial Intelligence, Vol. 2, pp. 12-17. Int. Institute of Advanced Studies in Systems Research and Cybernetics.
  5. Dewey, D. 2011. Learning what to value. In: Schmidhuber, J., Thórisson, K. R., and Looks, M. (eds) AGI 2011. LNCS (LNAI), vol. 6830, pp. 309-314. Springer, Heidelberg.10.1007/978-3-642-22887-2_35
  6. Ghahramani, Z. 1997. Learning dynamic Bayesian networks. In: Giles, C., and Gori, M. (eds), Adaptive Processing of Temporal Information. LNCS, vol. 1387, pp. 168-197. Springer, Heidelberg.10.1007/BFb0053999
  7. Gisslén, L., Luciw, M., Graziano, V., and Schmidhuber, J. 2011. Sequential constant size compressors for reinforcement learning. In: Schmidhuber, J., Thórisson, K. R., and Looks, M. (eds) AGI 2011. LNCS (LNAI), vol. 6830, pp. 31-40. Springer, Heidelberg.10.1007/978-3-642-22887-2_4
  8. Goertzel, B. 2004. Universal ethics: the foundations of compassion in pattern dynamics. http://www.goertzel.org/papers/UniversalEthics.htm
  9. Hibbard, B. 2008. The technology of mind and a new social contract. J. Evolution and Technology 17(1), pp. 13-22.
  10. Hutter, M. 2005. Universal artificial intelligence: sequential decisions based on algorithmic probability. Springer, Heidelberg.
  11. Hutter, M. 2009a. Feature reinforcement learning: Part I. Unstructured MDPs. J. Artificial General Intelligence 1, pp. 3-24.
  12. Hutter, M. 2009b. Feature dynamic Bayesian networks. In: Goertzel, B., Hitzler, P., and Hutter, M. (eds) AGI 2009. Proc. Second Conf. on AGI, pp. 67-72. Atlantis Press, Amsterdam.10.2991/agi.2009.6
  13. Koutroumbas, K., and Theodoris, S. 2008. Pattern recognition (4th ed.). Academic Press, Boston.
  14. Li, M., and Vitanyi, P. 1997. An introduction to Kolmogorov complexity and its applications. Springer, Heidleberg.10.1007/978-1-4757-2606-0
  15. Lloyd, S. Computational Capacity of the Universe. Phys. Rev. Lett. 88 (2002) 237901.10.1103/PhysRevLett.88.23790112059399
  16. Olds, J., and P. Milner, P. 1954. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47, pp. 419-427.
  17. Omohundro, S. 2008. The basic AI drive. In Wang, P., Goertzel, B., and Franklin, S. (eds) AGI 2008. Proc. First Conf. on AGI, pp. 483-492. IOS Press, Amsterdam.
  18. Orseau, L., and Ring, M. 2011a. Self-modification and mortality in artificial agents. In: Schmidhuber, J., Thórisson, K. R., and Looks, M. (eds) AGI 2011. LNCS (LNAI), vol. 6830, pp. 1-10. Springer, Heidelberg.10.1007/978-3-642-22887-2_1
  19. Puterman, M. L. 1994. Markov Decision Processes - Discrete Stochastic Dynamic Programming. Wiley, New York.10.1002/9780470316887
  20. Ring, M., and Orseau, L. 2011b. Delusion, survival, and intelligent agents. In: Schmidhuber, J., Thórisson, K. R., and Looks, M. (eds) AGI 2011. LNCS (LNAI), vol. 6830, pp. 11-20. Springer, Heidelberg.10.1007/978-3-642-22887-2_2
  21. Russell, S., and Norvig, P. 2010. Artificial intelligence: a modern approach (3rd ed.). Prentice Hall, New York.
  22. Schmidhuber, J. 2002. The speed prior: a new simplicity measure yielding near-optimal computable predictions. In: Kiven, J., and Sloan, R. H. (eds) COLT 2002. LNCS (LNAI), vol. 2375, pp. 216-228. Springer, Heidelberg.10.1007/3-540-45435-7_15
  23. Schmidhuber, J. 2009. Ultimate cognition à la Gödel. Cognitive Computation 1(2), pp. 177-193.
  24. Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning: an introduction. MIT Press.10.1109/TNN.1998.712192
  25. Wang, P. 1995. Non-Axiomatic Reasoning System — Exploring the essence of intelligence. PhD Dissertation, Indiana University Comp. Sci. Dept. and the Cog. Sci. Program.
  26. Wasser, M. 2011. Rational universal benevolence: simpler, safer, and wiser than "friendly AI." In: Schmidhuber, J., Thórisson, K. R., and Looks, M. (eds) AGI 2011. LNCS (LNAI), vol. 6830, pp. 153-162. Springer, Heidelberg.10.1007/978-3-642-22887-2_16
  27. Yudkowsky, E. 2004. CoherentExtrapolatedVolition. http://www.sl4.org/wiki/CollectiveVolition
Language: English
Page range: 1 - 24
Published on: May 11, 2012
Published by: Artificial General Intelligence Society
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2012 Bill Hibbard, published by Artificial General Intelligence Society
This work is licensed under the Creative Commons License.

Volume 3 (2012): Issue 1 (May 2012)