Have a personal or library account? Click to login
Collaborative Filtering Based on Bi-Relational Data Representation Cover

Collaborative Filtering Based on Bi-Relational Data Representation

Open Access
|Feb 2013

References

  1. [1] Aggarwal C.C., Wolf J.L., Wu K.-L., Yu P.S., Horting Hatches an Egg: A New Graph-Theoretic Approach to Collaborative Filtering, in: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 1999, pp. 201-212.10.1145/312129.312230
  2. [2] Ciesielczyk M., Szwabe A., RSVD-based Dimensionality Reduction for Recommender Systems, International Journal of Machine Learning and Computing, vol. 1, no. 2, 2011, 170-175.10.7763/IJMLC.2011.V1.25
  3. [3] Cohen T., Schaneveldt R., Widdows D., Reflective Random Indexing and Indirect Inference: A Scalable Method for Discovery of Implicit Connections, Journal of Biomedical Informatics, 43, 2, 2010, 240-256.10.1016/j.jbi.2009.09.00319761870
  4. [4] Cremonesi P., Koren Y., Turrin R., Performance of Recommender Algorithms on Topn Recommendation Tasks, in: Proceedings of the Fourth ACM Conference on Recommender Systems (RecSys ’10), New York, NY, USA, 2010, pp. 39--46.10.1145/1864708.1864721
  5. [5] Damljanovic D., Petrak J., Lupu M., Cunningham H., Carlsson M., Engstrom G., Andersson B., Random Indexing for Finding Similar Nodes within Large RDF graphs, in: R. Garcia-Castro, D. Fensel, G. Antoniou (eds.), The Semantic Web: ESWC 2011 Workshops, LNCS, vol. 7117, Springer, Berlin Heidelberg, 2011, 156-171.
  6. [6] Fensel D., van Harmelen F., Unifying reasoning and search to web scale, IEEE Internet Computing, 11(2), 96, 2007, 94-95.10.1109/MIC.2007.51
  7. [7] Fouss F., Francoisse K., Yen L., Pirotte A., Saerens M., An experimental investigation of kernels on graphs for collaborative recommendation and semi-supervised classification, Neural Networks, 31, 2012, 53-72.10.1016/j.neunet.2012.03.00122497802
  8. [8] Franz T., Schultz A., Sizov S., Staab S., Triplerank: Ranking Semantic Web Data by Tensor Decomposition, in: Proceedings of The Semantic Web-ISWC, 2009, pp. 213-228.10.1007/978-3-642-04930-9_14
  9. [9] Herlocker J.L., Konstan J.A., Terveen L.G., Riedl J.T., Evaluating Collaborative Filtering Recommender Systems, ACM Trans. Information Systems, vol. 22, no. 1, 2004, 5-53.10.1145/963770.963772
  10. [10] Li Y., Hu J., Zhai C.X., Chen Y., Improving one-class collaborative filtering by incorporating rich user information, in: Proceedings of the 19th ACM international conference on Information and knowledge management (CIKM ’10), ACM, New York, NY, USA, 2010, pp. 959-968.10.1145/1871437.1871559
  11. [11] Manning Ch. D., Raghavan P., Sch¨utze H., Introduction to Information Retrieval, Cambridge University Press, 2008.10.1017/CBO9780511809071
  12. [12] Nickel M., Tresp V., Kriegel H.P., A Three-Way Model for Collective Learning on Multi-Relational Data, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 809-816.
  13. [13] Pan R., Zhou Y., Cao B., Liu N. N., Lukose R., Scholz M., Yang Q.: One-Class Collaborative Filtering. Technical Report. HPL-2008-48R1, HP Laboratories, 2008.10.1109/ICDM.2008.16
  14. [14] Pitowsky I., Quantum Probability, Quantum Logic, Lecture Notes in Physics, 321, Heidelberg, Springer, 1989.
  15. [15] Saganowski S., Brodka P., Kazienko P., Influence of the User Importance Measure on the Group Evolution Discovery, Foundations of Computing and Decision Sciences, 2012, 295-305.10.2478/v10209-011-0017-6
  16. [16] Sarwar B., Karypis G., Konstan J., Riedl J., Application of Dimensionality Reduction in Recommender System-A Case Study, in: Proceedings of the ACM EC’00 Conference, Minneapolis, 2000, pp. 158-167.10.21236/ADA439541
  17. [17] Sindhwani V., Bucak S.S., Hu J., Mojsilovic A., A Family of Non-negative Matrix Factorizations for One-Class Collaborative Filtering Problems, in: Proceedings of the ACM Recommender Systems Conference, RecSys ’2009, New York, 2009.
  18. [18] Singh A.P., Gordon G.J., Relational Learning via Collective Matrix Factorization, in: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, 2008, pp. 650-658.10.1145/1401890.1401969
  19. [19] Steck H., Training and testing of recommender systems on data missing not at random, in: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD ’10), ACM, New York, NY, USA, 2010, pp. 713-722.10.1145/1835804.1835895
  20. [20] Struyf J., Blockeel H., Relational Learning, in: C. Sammut, G.Webb (eds.), Encyclopedia of Machine Learning, Springer, 2010, 851-857.10.1007/978-0-387-30164-8_719
  21. [21] Sutskever I., Salakhutdinov R., Tenenbaum J. B.: Modelling Relational Data Using Bayesian Clustered Tensor Factorization, Advances in Neural Information Processing Systems, 22, 2009.
  22. [22] Szwabe A., Ciesielczyk M., Janasiewicz T., Semantically enhanced collaborative filtering based on RSVD, in: P. Jedrzejowicz , N.-T. Nguyen, K. Hoang (eds.), Computational Collective Intelligence, Technologies and Applications, LNCS, vol. 6923, Springer, Berlin Heidelberg, 2011, 10-19.
  23. [23] Szwabe A., Misiorek P., Walkowiak P., Reflective Relational Learning for Ontology Alignment, in: S. Omaru et al. (eds.), Distributed Computing and Artificial Intelligence, Advances in Intelligent and Soft Computing, vol. 151, Springer-Verlag Berlin/Heidelberg, 2012, 519-526.10.1007/978-3-642-28765-7_62
  24. [24] Szwabe A., Ciesielczyk M., Misiorek P., Long-tail Recommendation Based on Reflective Indexing, in: D. Wang, M. Reynolds (eds.), AI 2011: Advances in Artificial Intelligence, LNCS/LNAI, vol. 7106, Springer, Berlin/Heidelberg, 2011, 142-151.
  25. [25] Todorova P., Kiryakov A., Ognyano D., Peikov I., Velkov R., Tashev Z., Conclusions from Experimental Data and Combinatorics Analysis. LarKC project deliverable 2.7.3, Technical Report, The Large Knowledge Collider (LarKC), 2009.
  26. [26] van Rijsbergen C.J.: The geometry of IR, The Geometry of Information Retrieval, Cambridge University Press, New York, USA, 2004, pp. 73-101. 10.1017/CBO9780511543333
DOI: https://doi.org/10.2478/v10209-011-0021-x | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 67 - 83
Published on: Feb 23, 2013
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2013 Andrzej Szwabe, Pawel Misiorek, Michal Ciesielczyk, Czeslaw Jedrzejek, published by Poznan University of Technology
This work is licensed under the Creative Commons License.