Have a personal or library account? Click to login
EEG Feature Selection for BCI Based on Motor Imaginary Task Cover

EEG Feature Selection for BCI Based on Motor Imaginary Task

By: Izabela Rejer  
Open Access
|Dec 2012

Abstract

The greatest problem met when a Brain Computer Interface (BCI) based on electroencephalographic (EEG) signals is to be created is a huge dimensionality of EEG feature space and at the same time very limited number of possible observations. The first is a result of a huge amount of data which can be recorded during the single trial, the latter - the result of individuality of EEG signals, which can significantly differ in different frequency bands determined for different subjects. These two reasons force the brain researches to reduce the huge EEG feature space to only some features, those which allow to build a BCI of a satisfactory accuracy. The paper presents the comparison of two methods of feature selection - blind source separation (BSS) method and method using interpretable features. The comparison was carried out with the data set recorded during EEG session with a subject whose task was to imagine movements of right and left hand.

DOI: https://doi.org/10.2478/v10209-011-0016-7 | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 283 - 292
Published on: Dec 22, 2012
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2012 Izabela Rejer, published by Poznan University of Technology
This work is licensed under the Creative Commons License.