Have a personal or library account? Click to login
Review of the Extraction Methods of DNA Microarray Features Based on Central Decision Class Separation vs Rough Set Classifier Cover

Review of the Extraction Methods of DNA Microarray Features Based on Central Decision Class Separation vs Rough Set Classifier

By: Piotr Artiemjew  
Open Access
|Dec 2012

References

  1. [1] Artiemjew P.: The Extraction Method of DNA Microarray Features Based on Experimental A Statistics. In: J.T. Yao et al. (eds.) RSKT 2011, Banff, Canada, LNCS, Springer, Heidelberg, vol. 6954, 2011, 642-648.10.1007/978-3-642-24425-4_81
  2. [2] Artiemjew P.: The Extraction Method of DNA Microarray Features Based on Modified F Statistics vs Classifier Based on Rough Mereology. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Ras, Z., W. (eds.) ISMIS 2011, Warsaw, Poland, LNAI, Springer, Heidelberg, vol. 6804, 2011, 33-42.10.1007/978-3-642-21916-0_4
  3. [3] Artiemjew P.: Classifiers based on rough mereology in analysis of DNA microarray data, in: Proceedings 2010 IEEE International Conference on Soft Computing andPattern Recognition SocPar’10, Sergy Pontoise France, IEEE Press, 2010.10.1109/SOCPAR.2010.5686493
  4. [4] Artiemjew P.: On strategies of knowledge granulation and applications to decision systems, PhD Dissertation, Polish Japanese institute of Information Technology, L. Polkowski, Supervisor, Warsaw, 2009.
  5. [5] Artiemjew P.: Rough mereological classifiers obtained from weak rough set inclusions, in: Proceedings of Int. Conference on Rough Set and Knowledge Technology RSKT’08, Chengdu China, LNAI, Springer Verlag, Berlin, vol. 5009, 2008, 229-236.10.1007/978-3-540-79721-0_34
  6. [6] Artiemjew P.: On classification of data by means of rough mereological granules of objects and rules, in: Proceedings of Int. Conference on Rough Set and Knowledge Technology RSKT’08, Chengdu China, LNAI, Springer Verlag, Berlin, vol. 5009, 2008, 221-228.10.1007/978-3-540-79721-0_33
  7. [7] Artiemjew P.: Natural versus granular computing: Classifiers from granular structures, in: Proceedings of 6th International Conference on Rough Sets and Current Trends in Computing RSCTC’08, Akron, Ohio, USA, Springer Berlin / Heidelberg, vol. 5306, 2008, 150-159.10.1007/978-3-540-88425-5_16
  8. [8] Artiemjew P.: Classifiers from granulated data sets: Concept dependent and layered granulation, in: Proceedings RSKD’07. Workshop at ECML/PKDD’07, Warsaw Univ. Press, Warsaw, 2007, 1-9.
  9. [9] Brown M., Grundy W., et al.: Knowledge-based analysis of microarray gene expression data by using support vector machines, University of California, 1999.
  10. [10] Eisen MB, Brown PO: DNA arrays for analysis of gene expression. Methods Enzymol 303, 1999, 179-205.10.1016/S0076-6879(99)03014-1
  11. [11] Furey T.S., Cristianini, Duffy N., Bernarski, Schummer M., Haussler D.: ”Support Vector Machine Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data,” Bioinformatics, vol. 16, 2000, 906-914.10.1093/bioinformatics/16.10.90611120680
  12. [12] Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.10.1007/978-94-011-5300-3
  13. [13] Molinaro A.M., Simon R., Pfeiffer R.M.: Prediction error estimation: a comparison of resampling methods, in: Bioinformatics, vol. 21, issue 15, Oxford UniversityPress, Oxford, UK, 2005, 3301-3307.10.1093/bioinformatics/bti49915905277
  14. [14] Polkowski L.: Toward rough set foundations. Mereological approach (a plenary lecture), in: Proceedings RSCTC04, Uppsala, Sweden, 2004, LNAI, Springer Verlag, Berlin, vol. 3066, 2004, 8-25.10.1007/978-3-540-25929-9_2
  15. [15] Polkowski L.: Formal granular calculi based on rough inclusions (a feature talk), in: Proceedings 2005 IEEE Int. Confrence on Granular Computing GrC’05, IEEE Press, 2005, 57-62.10.1109/GRC.2005.1547235
  16. [16] Polkowski L.: Formal granular calculi based on rough inclusions (a feature talk), in: Proceedings 2006 IEEE Int. Conference on Granular Computing GrC’06, IEEE Press, 2006, 57-62.10.1109/GRC.2005.1547235
  17. [17] Polkowski L.: Granulation of knowledge in decision systems: The approach based on rough inclusions. The Method and its applications (plenary talk), in: Lecture Notes in Artificial Intelligence (Proceedings RSEiSP’07), Springer Verlag, Berlin, vol. 4585, 2005, 69-79.
  18. [18] Polkowski L.: The paradigm of granular rough computing, in: ProceedingsICCI’07. 6th IEEE Intern. Conf. on Cognitive Informatics, IEEE Computer Society, Los Alamitos, CA, 2007, 145-163.10.1109/COGINF.2007.4341885
  19. [19] Polkowski L.: A Unified Approach to Granulation of Knowledge and Granular Computing Based on Rough Mereology: A Survey, in: Handbook of Granular Computing, Witold Pedrycz, Andrzej Skowron, Vladik Kreinovich (Eds.), John Wiley & Sons, New York, 2008, 375-401.10.1002/9780470724163.ch16
  20. [20] Polkowski L., Artiemjew P.: On classifying mappings induced by granular structures. Transactions on Rough Sets IX. Lecture Notes in Computer Science, Springer Verlag, Berlin, vol. 5390, 2008, 264-286.
  21. [21] Polkowski L., Artiemjew P.: A study in granular computing: On classifiers induced from granular reflections of data, Transactions on Rough Sets IX. Lecture Notes in Computer Science, Springer Verlag, Berlin, vol. 5390,2008, 230-263.
  22. [22] Schena M.: Microarray analysis. Wiley, Hoboken, NJ, USA, 2003.
  23. [23] http://tunedit.org/repo/RSCTC/2010/A
  24. [24] Zadeh L.A.: Fuzzy sets and information granularity. In: Gupta, M., Ragade, R., Yager, R.R.(Eds.): Advances in Fuzzy Set Theory and Applications. North Holland, Amsterdam, 1979, 3-18.
DOI: https://doi.org/10.2478/v10209-011-0013-x | Journal eISSN: 2300-3405 | Journal ISSN: 0867-6356
Language: English
Page range: 239 - 252
Published on: Dec 22, 2012
Published by: Poznan University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2012 Piotr Artiemjew, published by Poznan University of Technology
This work is licensed under the Creative Commons License.