Akaike, H. 1973. Information theory as an extension of the maximum likelihood principle. - In: Petrov, B.N. & Csaki, F. (eds), Second international symposium on information theory, Akademiai Kiado, Budapest, pp. 267-281.
*Anderson, R.P. & Gonzalez, I.J. 2011. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. - Ecol. Modelling 222: 2796-2811.10.1016/j.ecolmodel.2011.04.011
*Anderson, R.P. & Raza, A. 2010. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. - J. Biogeogr. 37: 1378-1393.10.1111/j.1365-2699.2010.02290.x
*Aranda, S.C. & Lobo, J.M. 2011. How well does presence-only-based species distribution modelling predict assemblage diversity? A case study of the Tenerife flora. - Ecography 34: 31-38.10.1111/j.1600-0587.2010.06134.x
Araújo, M.B. & Guisan, A. 2006. Five (or so) challenges for species distribution modelling. - J. Biogeogr. 33: 1677-1688.10.1111/j.1365-2699.2006.01584.x
Araújo, M.B., Pearson, R.G., Thuiller, W. & Erhard, M. 2005. Validation of species-climate impact models under climate change. - Global Change Biol. 11: 1504-1513.10.1111/j.1365-2486.2005.01000.x
*Auestad, I., Halvorsen, R., Bakkestuen, V. & Erikstad, L. 2011. Utbredelsesmodellering av fremmede invaderende karplanter langs veg. - Dir. Naturforv. Utredn. 2011: 2: 1-30.
Austin, M.P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. - Ecol. Modelling 157: 101-118.10.1016/S0304-3800(02)00205-3
Austin, M. 2007. Species distribution models and ecological theory: a critical assessment and some possible new approaches. - Ecol. Modelling 200: 1-19.10.1016/j.ecolmodel.2006.07.005
Bakkestuen, V., Aarrestad, P.A., Stabbetorp, O.E., Erikstad, L. & Eilertsen, O. 2010. Vegetation composition, gradients and environment relationships of birch forest in six reference areas in Norway. - Sommerfeltia 33: 1-226.
Barbosa, A.M. 2009. Transferability of environmental favourability models in geographic space: the case of the Iberian desman (Galemys pyrenaicus) in Portugal and Spain. - Ecol. Modelling 220: 747-754.10.1016/j.ecolmodel.2008.12.004
*Bartel, R.A. & Sexton, J.O. 2009. Monitoring habitat dynamics for rare and endangered species using satellite images and niche-based models. - Ecography 32: 888-896.10.1111/j.1600-0587.2009.05797.x
*Bedia, J., Busqué, J. & Gutiérrez, J.M. 2011. Predicting plant species distribution across an alpine rangeland in northern Spain: a comparison of probabilistic methods. - Appl. Veg. Sci. 14: 415-432.10.1111/j.1654-109X.2011.01128.x
*Bradley, B.A., Wilcove, D.S. & Oppenheimer, M. 2010. Climate change increases risk of plant invasion in the Eastern United States. - Biol. Invasions 12: 1855-1872.10.1007/s10530-009-9597-y
*Braunisch, V. & Suchant, R. 2010. Predicting species distributions based on incomplete survey data: the trade-off between precision and scale. - Ecography 33: 826-840.10.1111/j.1600-0587.2009.05891.x
Brown, K.A., Spector, S. & Wu, W. 2008. Multi-scale analysis of species introductions: combining landscape and demographic models to improve management decisions about non-native species. - J. appl. Ecol. 45: 1639-1648.10.1111/j.1365-2664.2008.01550.x
*Buermann, W., Saatchi, S., Smith, T.B., Zutta, B.R., Chaves, J.A., Milá, B. & Graham, C.H. 2008. Predicting species distributions across the Amazonian and Andean regions using remote sensing data. - J. Biogeogr. 35: 1160-1176.10.1111/j.1365-2699.2007.01858.x
*Carnaval, A.C. & Moritz, C. 2008. Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. - J. Biogeogr. 35: 1187-1201.10.1111/j.1365-2699.2007.01870.x
*Cordellier, M. & Pfenninger, M. 2009. Inferring the past to predict the future: climate modelling predictions and phylogeography for the freshwater gastropod Radix balthica (Pulmonata Basommatophora). - Molec. Ecol. 18: 534-544.10.1111/j.1365-294X.2008.04042.x19161472
*Costa, G.C., Nogueira, C., Machado, R.B. & Colli, G.R. 2010. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot. - Biodiv. Conserv. 19: 883-899.10.1007/s10531-009-9746-8
*Cunningham, H.R., Rissler, L.J. & Apodaca, J.J. 2009. Competition at the boundary in the slimy salamander: using reciprocal transplants for studies on the role of biotic interactions in spatial distributions. - J. Anim. Ecol. 78: 52-62.10.1111/j.1365-2656.2008.01468.x
Della Pietra, S., Della Pietra, V. & Lafferty, J. 1997. Inducing features of random fields. - IEEE Trans. Pattern Anal. Mach. Intell. 19: 1-13.10.1109/34.588021
DeLong, E.R., DeLong, D.M. & Clarke-Pearson, D.L. 1988. Comparing the areas under two or more correlated receiver operating characteristic curves: a non-parametric approach - Biometrics 44: 837-845.10.2307/2531595
*DeMatteo, K.E. & Loiselle, B.A. 2008. New data on the status and distribution of the bush dog (Speothos venaticus): evaluating its quality of protection and directing research efforts. - Biol. Conserv. 141: 2494-2505.10.1016/j.biocon.2008.07.010
*Diniz-Filho, J.A.F., Bini, L.M., Rangel, T.F., Loyola, R.D., Hof, C., Nogués-Bravo, D. & Araújo, M.B. 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. - Ecography 32: 897-906.10.1111/j.1600-0587.2009.06196.x
Dormann, C. 2011. Modelling species’ distributions. - In: Jopp, F., Reuter, H. & Breckling, B. (eds), Modelling complex ecological dynamics: an introduction into ecological modelling, Springer, Berlin, pp. 179-196.
Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., Kühn, I., Ohlemüller, R., Peres-Neto, P.R., Reineking, B., Schröder, B., Schurr, F.M. & Wilson, R. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. - Ecography 30: 609-628.10.1111/j.2007.0906-7590.05171.x
Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J.-P. & Guisan, A. 2011. Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. - Divers. Distrib. 17: 1122-1131.10.1111/j.1472-4642.2011.00792.x
Dudík, M., Phillips, S.J. & Schapire, R.E. 2007. Maximum entropy density estimation with generalized regularization and an application to species distribution modeling. - J. Machine Learning Res. 8: 1217-1260.
*Echarri, F., Tambussi, C. & Hospitaleche, C.A. 2009. Predicting the distribution of the crested tinamous, Eudromia spp. (Aves, Tinamiformes). - J. Ornithol. 150: 75-84.10.1007/s10336-008-0319-5
*Edrén, S.M.C., Wisz, M.S., Teilmann, J., Dietz, R. & Söderkvist, J. 2010. Modelling spatial patterns in harbour porpoise satellite telemetry data using maximum entropy. - Ecography 33: 698-708.10.1111/j.1600-0587.2009.05901.x
*Edvardsen, A., Bakkestuen, V. & Halvorsen, R. 2011. A fine-grained spatial prediction model for the red-listed vascular plant Scorzonera humilis. - Nord. J. Bot. 29: 495-504.10.1111/j.1756-1051.2010.00984.x
Edwards, T.C.J., Cutler, D.R., Zimmermann, N.E., Geiser, L. & Moisen, G.G. 2006. Effects of sample survey design on the accuracy of classification tree models in species distribution models. - Ecol. Modelling 199: 132-141.10.1016/j.ecolmodel.2006.05.016
Elith, J. & Graham, C.H. 2009. Do they? How do they? WHY do they differ? On finding reasons for differing performances of species distribution models. - Ecography 32: 66-77.10.1111/j.1600-0587.2008.05505.x
Elith, J. & Leathwick, J.R. 2009. Species distribution models: ecological explanation and prediction across space and time. - A. Rev. Ecol. Evol. Syst. 40: 677-697.10.1146/annurev.ecolsys.110308.120159
Elith, J., Leathwich, J.R. & Hastie, T. 2008. A working guide to boosted regression trees. - J. Anim. Ecol. 77: 802-813.10.1111/j.1365-2656.2008.01390.x18397250
*Feeley, K.J. & Silman, M.R. 2011. Keep collecting: accurate species distribution modelling requires more collections than previously thought. - Divers. Distrib. 17: 1132-1140.10.1111/j.1472-4642.2011.00813.x
*Ficetola, G.F., Thuiller, W. & Miaud, C. 2007. Prediction and validation of the potential global distribution of a problematic invasive alien species. - Divers. Distrib. 13: 476-485.10.1111/j.1472-4642.2007.00377.x
Fielding, A.H. & Bell, J.E. 1997. A review of methods for the assessment of prediction errors in conservation presence-absence models. - Environm. Conserv. 24: 38-49. *Fitzpatrick, M.C., Gove, A.D., Sanders, N.J. & Dunn, R.R. 2008. Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. - Global Change Biol. 14: 1337-1352.
Franklin, J. 2010. Moving beyond static species distribution models in support of conservation biogeography. - Divers. Distrib. 16: 321-330.10.1111/j.1472-4642.2010.00641.x
Franklin, J., Wejnert, K.E., Hathaway, S.A., Rochester, C.J. & Fisher, R.N. 2009. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. - Divers. Distrib. 15: 167-177.10.1111/j.1472-4642.2008.00536.x
*Gaikwad, J., Wilson, P.D. & Ranganathan, S. 2011. Ecological niche modeling of customary medicinal plant species used by Australian aborigines to identify species-rich and culturally valuable areas for conservation. - Ecol. Modelling 222: 3437-3443.10.1016/j.ecolmodel.2011.07.005
*Gastón, A. & García-Viñas, J.I. 2011. Modelling species distributions with penalised logistic regressions: a comparison with maximum entropy models. - Ecol. Modelling 222: 2037-2041.10.1016/j.ecolmodel.2011.04.015
Gellrich, M. & Zimmermann, N.E. 2007. Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: a spatial statistical modelling approach. - Landsc. Urban Planning 79: 65-76.10.1016/j.landurbplan.2006.03.004
*Gibson, L., Barrett, B. & Burbridge, A. 2007. Dealing with uncertain absences in habitat modelling: a case study of a rare ground-dwelling parrot. - Divers. Distrib. 13: 704-713.10.1111/j.1472-4642.2007.00365.x
*Giovanelli, J.G.R., Haddad, C.F.B. & Alexandrino, J. 2008. Predicting the potential distribution of the alien invasive American bullfrog (Lithobates catesbeianus) in Brazil. - Biol. Invasions 10: 585-590.10.1007/s10530-007-9154-5
*Gormley, A.M., Forsyth, D.M., Griffioen, P., Lindeman, M., Ramsey, D.S.L., Scroggie, M.P. & Woodford, L. 2011. Using presence-only and presence-absence data to estimate the current and potential distributions of established invasive species. - J. appl. Ecol. 48: 25-34.10.1111/j.1365-2664.2010.01911.x
*Graham, C.H. & Hijmans, R.J. 2006. A comparison of methods for mapping species ranges and species richness. - Global Ecol. Biogeogr. 15: 578-587.10.1111/j.1466-8238.2006.00257.x
Guisan, A., Broennimann, O., Engler, R., Vust, M., Yoccoz, N.G., Lehmann, A. & Zimmermann, N.E. 2006. Using niche-based models to improve the sampling of rare species. - Conserv. Biol. 20: 501-511.10.1111/j.1523-1739.2006.00354.x
Guisan, A., Graham, C.H., Elith, J., Huettmann, F. & Group, N.S.D.M. 2007. Sensitivity of predictive species distribution models to change in grain size. - Divers. Distrib. 13: 332-340.10.1111/j.1472-4642.2007.00342.x
Hanley, J.A. & McNeil, B.J. 1982. The meaning and use of the area under a Receiver Operating Characteristic (ROC) curve. - Radiology 143: 29-36.10.1148/radiology.143.1.70637477063747
Hengl, T., Sierdsema, H., Radović, A. & Dilo, A. 2009. Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regressionkriging. - Ecol. Modelling 220: 3499-3511.
*Hernandez, P.A., Graham, C.H., Master, L.L. & Albert, D.L. 2006. The effect of sample size and species characteristics on performance of different species distribution modeling methods. - Ecography 29: 773-785.10.1111/j.0906-7590.2006.04700.x
Hijmans, R.J. & Elith, J. 2011. Species distribution modelling with R. - http://cran.r-project.org/ web/packages/dismo/vignettes/sdm.pdf, The R foundation for statistical computing.
*Hijmans, R.J. & Graham, C.H. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. - Global Change Biol. 12: 2272-2281.10.1111/j.1365-2486.2006.01256.x
Hirzel, A.H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. 2006. Evaluating the ability of habitat suitability models to predict species presences. - Ecol. Modelling 199: 142-152.10.1016/j.ecolmodel.2006.05.017
*Hoffman, J.D., Aguilar-Amuchastegui, N. & Tyre, A.J. 2010. Use of simulated data from a processbased habitat model to evaluate methods for predicting species occurrence. - Ecography 33: 656-666.10.1111/j.1600-0587.2009.05495.x
Hortal, J., Jiménez-Valverde, A., Gómez, J.F., Lobo, J.M. & Baselga, A. 2008. Historical bias in biodiversity inventories affects the observed environmental niche of the species. - Oikos 117: 847-858.10.1111/j.0030-1299.2008.16434.x
Jiménez-Valverde, A., Lobo, J. & Hortal, J. 2008. Not as good as they seem: the importance of concepts in species distribution modelling. - Divers. Distrib. 14: 885-890.10.1111/j.1472-4642.2008.00496.x
Kadmon, R., Farber, O. & Danin, A. 2004. Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. - Ecol. Appl. 14: 401-413.10.1890/02-5364
*Kharouba, H.M., Algar, A.C. & Kerr, J.T. 2009. Historically calibrated predictions of butterfly species’ range shift using global change as a pseudo-experiment. - Ecology 90: 2213-2222.10.1890/08-1304.119739383
Kodric-Brown, A. & Brown, J.H. 1993. Incomplete data sets in community ecology and biogeography: a cautionary tale. - Ecol. Appl. 3: 736-742.10.2307/194210427759285
*Lahoz-Monfort, J.J., Guillera-Arroita, G., Milner-Gulland, E.J., Young, R.P. & Nicholson, E. 2010. Satellite imagery as a single source of predictor variables for habitat suitability modelling: how Landsat can inform the conservation of a critically endangered lemur. - J. appl. Ecol. 47: 1094-1102.10.1111/j.1365-2664.2010.01854.x
Leathwick, J.R., Elith, J. & Hastie, T. 2006. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. - Ecol. Modelling 199: 188-196.10.1016/j.ecolmodel.2006.05.022
Lobo, J.M., Jiménez-Valverde, A. & Hortal, J. 2010. The uncertain nature of absences and their importance in species distribution modelling. - Ecography 33: 103-114.10.1111/j.1600-0587.2009.06039.x
Lobo, J.M., Jiménez-Valverde, A. & Real, R. 2008. AUC: a misleading measure of the performance of predictive distribution models. - Global Ecol. Biogeogr. 17: 145-151.10.1111/j.1466-8238.2007.00358.x
*Lozier, J.D., Aniello, P. & Hickerson, M.J. 2009. Predicting the distribution of Sasquatch in western North America: anything goes with ecological niche modelling. - J. Biogeogr. 36: 1623-1627.10.1111/j.1365-2699.2009.02152.x
Luoto, M., Pöyry, J., Heikkinen, R.K. & Saarinen, K. 2005. Uncertainty of bioclimatic envelope models based on the geographical distribution of species. - Global Ecol. Biogeogr. 14: 575-584.10.1111/j.1466-822X.2005.00186.x
Maggini, R., Lehmann, A., Zimmermann, N.E. & Guisan, A. 2006. Improving generalized regression analysis for the spatial prediction of forest communities. - J. Biogeogr. 33: 1729-1749.10.1111/j.1365-2699.2006.01465.x
*Marini, M.Á., Barbet-Massin, M., Lopes, L. & Jiguet, F. 2010. Predicting the occurrence of rare Brazilian birds with species distribution models. - J. Ornithol. 151: 857-866.10.1007/s10336-010-0523-y
*Marino, J., Bennett, M., Cossios, D., Iriarte, A., Lucherini, M., Pliscoff, P., Sillero-Zubiri, C., Villalba, L. & Walker, S. 2011. Bioclimatic constraints to Andean cat distribution: a modelling application for rare species. - Divers. Distrib. 17: 311-322.10.1111/j.1472-4642.2011.00744.x
Marmion, M., Luoto, M., Heikkinen, R.K. & Thuiller, W. 2009a. The performance of state-of-the-art modelling techniques depends on geographical distribution of species. - Ecol. Modelling 220: 3512-3520. *Mateo, R.G., Croat, T.B., Felicísimo, Á.M. & Muñoz, J. 2010. Profile or group discriminative techniques? Generating reliable species distribution models using pseudo-absences and target-group absences from natural history collections. - Divers. Distrib. 16: 84-94.
*Merckx, B., Steyaert, M., Vanreusel, A., Vincx, M. & Vanaverbeke, J. 2011. Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling. - Ecol. Modelling 222: 588-597.
Minchin, P.R. 1989. Montane vegetation of the Mt. Field massif, Tasmania: a test of some hypotheses about properties of community patterns. - Vegetatio 83: 97-110.
*Monterroso, P., Brito, J.C., Ferreras, P. & Alves, P.C. 2009. Spatial ecology of the European wildcat in a Mediterranean ecosystem: dealing with small radio-tracking datasets in species conservation. - J. Zool. 279: 27-35.10.1111/j.1469-7998.2009.00585.x
Mouton, A.M., de Baets, B. & Goethals, P.L.M. 2010. Ecological relevance of performance criteria for species distribution models. - Ecol. Modelling 221: 1995-2002.10.1016/j.ecolmodel.2010.04.017
*Niamir, A., Skidmore, A.K., Toxopeus, A.G., Muñoz, A.R. & Real, R. 2011. Finessing atlas data for species distribution models. - Divers. Distrib. 17: 1173-1185.10.1111/j.1472-4642.2011.00793.x
Nóbrega, C.C. & de Marco, P.J. 2011. Unprotecting the rare species: a niche-based gap analysis for odonates in a core Cerrado area. - Divers. Distrib. 17: 491-505.10.1111/j.1472-4642.2011.00749.x
Økland, R.H., Rydgren, K. & Økland, T. 2003. Plant species composition of boreal spruce swamp forests: closed doors and windows of opportunity. - Ecology 84: 1909-1919.10.1890/0012-9658(2003)084[1909:PSCOBS]2.0.CO;2
Økland, R.H., Økland, T. & Rydgren, K. 2001. Vegetation-environment relationships of boreal spruce swamp forests in Østmarka Nature Reserve, SE Norway. - Sommerfeltia 29: 1-190.10.2478/som-2001-0001
Oksanen, J. & Minchin, P.R. 2002. Continuum theory revisited: what shape are species responses along ecological gradients? - Ecol. Modelling 157: 119-129.10.1016/S0304-3800(02)00190-4
*Parisien, M.A. & Moritz, M.A. 2009. Environmental controls on the distribution of wildfire at multiple spatial scales. - Ecol. Monogr. 79: 127-154.10.1890/07-1289.1
*Parolo, G., Rossi, G. & Ferrarini, A. 2008. Toward improved species niche modelling: Arnica montana in the Alps as a case study. - J. appl. Ecol. 45: 1410-1418.10.1111/j.1365-2664.2008.01516.x
Pearce, J.L. & Boyce, M.S. 2006. Modelling distribution and abundance with presence-only data. - J. appl. Ecol. 43: 405-412.10.1111/j.1365-2664.2005.01112.x
Pearce, J. & Ferrier, S. 2000a. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. - Ecol. Modelling 128: 127-147.10.1016/S0304-3800(99)00227-6
Pearce, J.L. & Ferrier, S. 2000b. Evaluating the predictive performance of habitat models developed using logistic regression. - Ecol. Modelling 133: 225-245.10.1016/S0304-3800(00)00322-7
*Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. 2007. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. - J. Biogeogr. 34: 102-117.10.1111/j.1365-2699.2006.01594.x
Peterson, A.T., Papes, M. & Eaton, M. 2007. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. - Ecography 30: 550-560.10.1111/j.0906-7590.2007.05102.x
Phillips, S.J. & Dudík, M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. - Ecography 31: 161-175.10.1111/j.0906-7590.2008.5203.x
Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwich, J.R. & Ferrier, S. 2009. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. - Ecol. Appl. 19: 181-197.10.1890/07-2153.119323182
Phillips, S.J., Dudík, M. & Schapire, R. 2004. A maximum entropy approach to species distribution modeling. - In: Anonymous (ed.), Proceedings of the 21st international conference on machine learning, ACM Press, New York, pp. 655-662.
Phillips, S. & Elith, J. 2010. POC-plots: calibrating species distribution models using presenceonly data. - Ecology 91: 2476-2484.10.1890/09-0760.120836469
*Pineda, E. & Lobo, J.M. 2009. Assessing the accuracy of species distribution models to predict amphibian species richness patterns. - J. anim. Ecol. 78: 182-190.10.1111/j.1365-2656.2008.01471.x18771504
Platts, P.J., Ahrends, A., Gereau, R.E., McClean, C.J., Lovett, J.C., Marshall, A.R., Pellikka, P.K.E., Mulligan, M., Fanning, E. & Marchant, R. 2010. Can distribution models help refine inventory- based estimates of conservation priority? A case study in the Eastern Arc forests of Tanzania and Kenya. - Divers. Distrib. 16: 628-642.10.1111/j.1472-4642.2010.00668.x
*Raes, N. & ter Steege, H. 2007. A null-model for significance testing of presence-only species distribution models. - Ecography 30: 727-736.10.1111/j.2007.0906-7590.05041.x
Randin, C.F., Dirnböck, T., Dullinger, S., Zimmermann, N.E., Zappa, M. & Guisan, A. 2006. Are nichebased species distribution models transferable in space? - J. Biogeogr. 33: 1689-1703.10.1111/j.1365-2699.2006.01466.x
*Rebelo, H. & Jones, G. 2010. Ground validation of presence-only modelling with rare species: a case study on barbastelles Barbastella barbastellus (Chiroptera: Vespertilionidae). - J. appl. Ecol. 47: 410-420.10.1111/j.1365-2664.2009.01765.x
Reineking, B. & Schröder, B. 2006. Constrain to perform: regularization of habitat models. - Ecol. Modelling 193: 675-690.10.1016/j.ecolmodel.2005.10.003
*Reside, A.E., Watson, I., VanDerWal, J. & Kutt, A.S. 2011. Incorporating low-resolution historic species location data decreases performance of distribution models. - Ecol. Modelling 222: 3444-3448.10.1016/j.ecolmodel.2011.06.015
*Riordan, E.C. & Rundel, P.W. 2009. Modelling the distribution of a threatened habitat: the California sage scrub. - J. Biogeogr. 36: 2176-2188.10.1111/j.1365-2699.2009.02151.x
Robertson, M.P., Cumming, G.S. & Erasmus, B.F.N. 2010. Getting the most out of atlas data. - Divers. Distrib. 16: 363-375.10.1111/j.1472-4642.2010.00639.x
*Rota, C.T., Fletcher, R., Jr., Evans, J.M. & Hutto, R.L. 2011. Does accounting for imperfect detection improve species distribution models? - Ecography 34: 659-670.10.1111/j.1600-0587.2010.06433.x
*Roura-Pascual, N., Brotons, L., Peterson, A.T. & Thuiller, W. 2009. Consensual predictions of potential distributional areas for invasive species: a case study of Argentine ants in the Iberian Peninsula. - Biol. Invasions 11: 1017-1031.10.1007/s10530-008-9313-3
Roxburgh, S.H. & Mokany, K. 2010. On testing predictions of species relative abundance from maximum entropy optimisation. - Oikos 119: 583-590.10.1111/j.1600-0706.2009.17772.x
*Rupprecht, F., Oldeland, J. & Finckh, M. 2011. Modelling potential distribution of the threatened tree species Juniperus oxycedrus: how to evaluate the predictions of different modelling approaches? - J. Veg. Sci. 22: 647-659.10.1111/j.1654-1103.2011.01269.x
Rydgren, K., Halvorsen, R., Auestad, I. & Hamre, L.N. in press. Ecological design is more important than compensatory mitigation for successful restoration of alpine spoil heaps. - Rest. Ecol. in press.
Rydgren, K., Økland, R.H. & Økland, T. 2003. Species response curves along environmental gradients: a case study from SE Norwegian swamp forests. - J. Veg. Sci. 14: 869-880.10.1111/j.1654-1103.2003.tb02220.x
Santika, T. 2011. Assessing the effect of prevalence on the predictive performance of species distribution models using simulated data. - Global Ecol. Biogeogr. 20: 181-192.10.1111/j.1466-8238.2010.00581.x
Santika, T. & Hutchinson, M.F. 2009. The effect of species response form on species distribution model prediction and inference. - Ecol. Modelling 220: 2365-2379.10.1016/j.ecolmodel.2009.06.004
*Sérgio, C., Figueira, R., Draper, D., Menezes, R. & Sousa, A.J. 2007. Modelling bryophyte distribution based on ecological information for extent of occurrence assessment. - Biol. Conserv. 135: 341-351.10.1016/j.biocon.2006.10.018
Shipley, B., Vile, D. & Garnier, É. 2006. From plant traits to plant communities: a statistical mechanistic approach to biodiversity. - Science 314: 812-814.10.1126/science.1131344
*Stachura-Skierczyńska, K., Tumiel, T. & Skierczyński, M. 2009. Habitat prediction model for three-toed woodpecker and its implications for the conservation of biologically valuable forests. - For. Ecol. Mgmt 258: 697-703.10.1016/j.foreco.2009.05.007
Steyerberg, E.W., Eijkemans, M.J., Harrell Jr., F.E. & Habbema, J.D. 2000. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. - Statist. Med. 19: 1059-1079.10.1002/(SICI)1097-0258(20000430)19:8<;1059::AID-SIM412>3.0.CO;2-0
*Suárez-Seoane, S., García de la Morena, E.L., Prieto, M.B.M., Osborne, P.E. & de Juana, E. 2008. Maximum entropy niche-based modelling of seasonal changes in little bustard (Tetraxtetrax) distribution. - Ecol. Modelling 219: 17-29.10.1016/j.ecolmodel.2008.07.035
Suárez-Seoane, S., Osborne, P.E. & Rosema, A. 2004. Can climate data from METEOSAT improve wildlife distribution models? - Ecography 27: 629-636.10.1111/j.0906-7590.2004.03939.x
*Svenning, J.-C., Normand, S. & Kageyama, M. 2008. Glacial refugia of temperate trees in Europe: insights from species distribution modelling. - J. Ecol. 96: 1117-1127.10.1111/j.1365-2745.2008.01422.x
*Synes, N.W. & Osborne, P.E. 2011. Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. - Global Ecol. Biogeogr. 20: 904-914.10.1111/j.1466-8238.2010.00635.x
*Thompson, G.D., Robertson, M.-P., Webber, B.L., Richardson, D.M., Le Roux, J.J. & Wilson, J.R.U. 2011. Predicting the subspecific identity of invasive species using distribution models: Acacia saligna as an example. - Divers. Distrib. 17: 1001-1014.10.1111/j.1472-4642.2011.00820.x
*Thorn, J.S., Nijman, V., Smith, D. & Nekaris, K.A.I. 2009. Ecological niche modelling as a technique for assessing threats and setting conservation priorities for Asian slow lorises (Primates: Nycticebus). - Divers. Distrib. 15: 289-298.10.1111/j.1472-4642.2008.00535.x
Tingley, R. & Herman, T.B. 2009. Land-cover data improve bioclimatic models for anurans and turtles at a regional scale. - J. Biogeogr. 36: 1656-1672.10.1111/j.1365-2699.2009.02117.x
*Václávík, T. & Meentemeyer, R.K. 2009. Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? - Ecol. Modelling 220: 3248-3258.10.1016/j.ecolmodel.2009.08.013
*VanDerWal, J., Shoo, L.P., Graham, C.H. & Williams, S.E. 2009a. Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? - Ecol. Modelling 220: 589-594.10.1016/j.ecolmodel.2008.11.010
*VanDerWal, J., Shoo, L.P. & Williams, S.P. 2009b. New approaches to understanding late Quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forests. - J. Biogeogr. 36: 291-301. van Neil, K.P. & Austin, M.P. 2007. Predictive vegetation modeling for conservation: impact of error propagation from digital elevation data. - Ecol. Appl. 17: 266-280.
Varela, S., Rodríguez, J. & Lobo, J.M. 2009. Is current climatic equilibrium a guarantee for the transferability of distribution model predictions? A case study of the spotted hyena. - J. Biogeogr. 36: 1645-1655.10.1111/j.1365-2699.2009.02125.x
Vaughan, I.P. & Ormerod, S.J. 2003. Improving the quality of distribution models for conservation by addressing shortcomings in the field collection of training data. - Conserv. Biol. 17: 1601-1611.10.1111/j.1523-1739.2003.00359.x
*Verbruggen, H., Tyberghein, L., Pauly, K., Vlaeminck, C., van Nieuwenhuyze, K., Kooistra, W., Leliaert, F. & de Clerck, O. 2009. Macroecology meets macroevolution: evolutionary niche dynamics in the seaweed Halimeda. - Global Ecol. Biogeogr. 18: 393-405.10.1111/j.1466-8238.2009.00463.x
*Wang, Y., Xie, B., Wan, F., Xiao, Q. & Dai, L. 2007. The potential geographic distribution of Radopholus similis in China. - Agric. Sci. China 6: 1444-1449.10.1016/S1671-2927(08)60006-1
*Ward, D.F. 2007. Modelling the potential geographic distribution of invasive ant species in New Zealand. - Biol. Invasions 9: 723-735.10.1007/s10530-006-9072-y
Ward, G., Hastie, T., Barry, S., Elith, J. & Leathwick, J.R. 2009. Presence-only data and the EM algorithm. - Biometrics 65: 554-563.10.1111/j.1541-0420.2008.01116.x482188618759851
Warren, D.L. & Seifert, S.N. 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. - Ecol. Appl. 21: 335-342.10.1890/10-1171.121563566
*Webber, B.L., Yates, C.J., La Maitre, D.C., Scott, J.K., Kriticos, D.J., Ota, N., McNeill, A., Le Roux, J.J. & Midgley, G.F. 2011. Modelling horses for novel climate courses: insights from projecting potential distributions of native and alien Australian acacias with correlative and mechanistic models. - Divers. Distrib. 17: 978-1000.10.1111/j.1472-4642.2011.00811.x
*Weber, T.C. 2011. Maximum entropy modeling of mature hardwood forest distribution in four U.S. states. - For. Ecol. Mgmt 261: 779-788.10.1016/j.foreco.2010.12.009
*Willems, E.P. & Hill, R.A. 2009. A critical assessment of two species distribution models: a case study of the vervet monkey (Cercopithecus aethiops). - J. Biogeogr. 36: 2300-2312.10.1111/j.1365-2699.2009.02166.x
*Williams, J.N., Seo, C.W., Thorne, J., Nelson, J.K., Erwin, S., O’Brien, J.M. & Schwartz, M.W. 2009. Using species distribution models to predict new occurrences for rare plants. - Divers.10.1111/j.1472-4642.2009.00567.x
*Wisz, M.S., Hijmans, R.J., Li, J., Peterson, A.T., Graham, C.H., Guisan, A. & NCEAS Predicting Species Distributions Working Group 2008. Effects of sample size on the performance of species distribution models. - Divers. Distrib. 14: 763-773.10.1111/j.1472-4642.2008.00482.x
Wohlgemuth, T., Nobis, M.P., Kienast, F. & Plattner, M. 2008. Modelling vascular plant diversity at the landscape scale using systematic samples. - J. Biogeogr. 35: 1226-1240.10.1111/j.1365-2699.2008.01884.x
Wollan, A.K., Bakkestuen, V. & Halvorsen, R. 2011. Romlig prediksjonsmodellering av åpen grunnlendt kalkmark i Oslofjord-området. - Univ. Oslo NatHist. Mus. Rapp. 11: 176-196.
*Wollan, A.K., Bakkestuen, V., Kauserud, H., Gulden, G. & Halvorsen, R. 2008. Modelling and predicting fungal distribution patterns using herbarium data. - J. Biogeogr. 35: 2298-2310.10.1111/j.1365-2699.2008.01965.x
*Wolmarans, R., Robertson, M.P. & van Rensburg, B.J. 2010. Predicting invasive alien plant distributions: how geographical bias in occurrence records influences model performance. - J. Biogeogr. 37: 1797-1810.10.1111/j.1365-2699.2010.02325.x
*Yates, C., McNeill, A., Elith, J. & Midgley, G. 2010. Assessing the impacts of climate change and land transformation on Banksia in the South West Australian floristic region. - Divers. Distrib. 16: 187-201.10.1111/j.1472-4642.2009.00623.x
*Yost, A.C., Petersen, S.L., Gregg, M. & Miller, R. 2008. Predictive modeling and mapping sage grouse (Centrocercus urophasianus) nesting habitat using maximum entropy and a longterm dataset from southern Oregon. - Ecol. Informatics 3: 375-386.10.1016/j.ecoinf.2008.08.004
*Young, B.F., Franke, I., Hernandez, P.A., Herzog, S.K., Paniagua, L., Tovar, C. & Valqui, T. 2009. Using spatial models to predict areas of endemism and gaps in the protection of Andean slope birds. - Auk 126: 554-565.10.1525/auk.2009.08155