Have a personal or library account? Click to login
A Review on Suspended Wood Dust Combustion. Efficiency and Fuel Quality Cover

A Review on Suspended Wood Dust Combustion. Efficiency and Fuel Quality

By: Kaspars Silins  
Open Access
|Dec 2012

References

  1. 1. Molcan, P., Lu, G., Bris, T. et. al. Characterization of biomass and coal co-firing on a 33 MWth Combustion Test Facility using flame imaging and gas/ash sampling techniques. Fuel, 2009, vol. 88, p. 2328-2334.10.1016/j.fuel.2009.06.027
  2. 2. Sarenbo, S. Wood ash dilemma-reduced quality due to poor combustion performance. Biomass & Bioenergy, 2009, vol. 33, 1212-1220.10.1016/j.biombioe.2009.05.007
  3. 3. Skrifvars, B-J., Lauren, T., Hupa, M. et. al. Ash behaviour in a pulverized wood fired boiler-a case study. Fuel, 2004, vol. 83, p. 1371-1379.10.1016/j.fuel.2004.01.008
  4. 4. Sovalainen, K. Co-firing of biomass in coal-fired utility boilers. AppliedEnergy, 2003, vol. 74, p. 369-381.10.1016/S0306-2619(02)00193-9
  5. 5. Nishiyama, A., Shimojima, H., Ishikawa, A., et. al. Fuel and emissions properties of Stirling engine operated with wood powder. Fuel 2007, vol. 86, p. 2333-2342.10.1016/j.fuel.2007.01.040
  6. 6. Standard CEN/TS 14961 Solid biofuels - Fuel specifications and classes
  7. 7. Bioenerģijas tehnoloģijas, D. Blumberga, I Veidenbergs, F Romagnoli, C. Rochas, A. Žandeckis, Riga: Institute of energy Systems and Environment, 2011
  8. 8. Handbook of Biomass combustion & Co-firing, S. van Loo, J. Koppejan, UK : Earthscan, 2008
  9. 9. Williams, A., Jones J.M., Ma, L., et. al. Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science, 2012, vol 381 113-137.10.1016/j.pecs.2011.10.001
  10. 10. Janvijitsakul, K., Kuprianov, V. I. Major gaseous and PAH emissions form a fluidized-bed combustor firing rice husk with high combustion efficiency. Fuel processing technology, 2008, vol. 89, p 777-78710.1016/j.fuproc.2008.01.013
  11. 11. Weber, R., Kupka, T., Zajac, K. Jet flames of refuse derived fuel. Combustion and Flame, 2009, vol 156, p. 922-92710.1016/j.combustflame.2008.12.011
  12. 12. Casaca, C., Costa, M. Co-combustion of biomass in a natural gas-fired furnace. Combustion Science and Technology, 2010, vol 175, N 11, p. 1953-1977.10.1080/714923187
  13. 13. Paulrud, S., Nillson, C. The effects of particle characteristics on emission from burning wood fuel powder. Fuel, 2004, vol. 83, p. 813-821.10.1016/j.fuel.2003.10.010
  14. 14. Eriksson, G., Kjellström, B., Lundqvist, B. et. al. Combustion of wood hydrolysis residue in a 150 kW powder burner. Fuel, 2004, vol. 83, p. 1635-1641.10.1016/j.fuel.2004.02.012
  15. 15. Ballester, J., Barroso, J., Cerecedo L. M. et. al. Comparative study of semi-industrial-scale flames of pulverized coals and biomass. Combustionand Flame, 2005, vol. 141, p. 204-215.10.1016/j.combustflame.2005.01.005
  16. 16. Lin, W., Jensen., P. A., Jensen, A. D. Biomass Suspension Combustion: Effect of Two-Stage Combustion on NOx Emissions in a Laboratory- Scale Swirl Burner. Energy & Fuels, 2009, vol. 23, p. 1398-1405.10.1021/ef8004866
  17. 17. Kupka, T., Mancini, M., Irmer, M., Weber, R. Investigation of ash deposit formation during co-firing of coal with sewage sludge, saw-dust and refuse derived fuel. Fuel, 2008, vol. 87, p. 2824-2837.10.1016/j.fuel.2008.01.024
  18. 18. T., Costen, P., Kandamby, N. H. et. al. The influence of burner injection mode on pulverized coal and biosolid co-fired flames. Combustion andFlame, 1994, vol. 99, p. 617-625.10.1016/0010-2180(94)90055-8
  19. 19. Mehrabian, R., Zahirovic, S., Scharler, R. et. al. A CFD model for thermal conversion of thermally thick biomass particles. Fuel ProcessingTechnology, 2012, vol. 95, p. 96-108.10.1016/j.fuproc.2011.11.021
  20. 20. Paulrud, S., Mattsson, J. E., Nilsson C. Particle and handling characteristics of wood fuel powder: effects of different mills. Fuelprocessing technology, 2002, vol. 76, p. 23-29.10.1016/S0378-3820(02)00008-5
  21. 21. Hong, L., Ip, E., Scott, J. et. al. Effects of particle shape and size on devolatilization of biomass particle. Fuel, 2010, vol. 89, 1156-1168.10.1016/j.fuel.2008.10.023
  22. 22. Demibras, A. Combustion characteristics of different biomass fuels. Progress in Energy and Combustion Science, 2004, vol. 30, p. 219-230.10.1016/j.pecs.2003.10.004
  23. 23. Palm, R., Grundmann, S., Weismüller, M. et. al. Experimental characterization and modelling of inflow conditions for a gas turbine swirl combustor. International Journal of Heat and Fluid Flow, 2006, vol. 27, p. 924-936.10.1016/j.ijheatfluidflow.2006.03.016
  24. 24. Syred N., A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Progress inEnergy and Combustion Science, 2006, vol. 32, p. 93-161.10.1016/j.pecs.2005.10.002
  25. 25. Khanna V. K. A Study of the Dynamics of Laminar and Turbulent Fullyand Partially Premixed Flames, PHD thesis, Virginia Polytechnic Institute and State University, 2001, p. 239.
  26. 26. Spliethoff, H., Power generation from Solid Fuels. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, p. 67210.1007/978-3-642-02856-4
  27. 27. Sami, M., Annamalai, K., Wooldridge, M. Co-firing of coal and biomass fuel blends. Progress in Energy and Combustion Science, 2001, vol. 27, p. 171-214.10.1016/S0360-1285(00)00020-4
DOI: https://doi.org/10.2478/v10145-012-0014-x | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 28 - 34
Published on: Dec 14, 2012
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2012 Kaspars Silins, published by Riga Technical University
This work is licensed under the Creative Commons License.