Have a personal or library account? Click to login
Energetic and Environmental Impacts Related to Transport and Assembling Processes in ABiogas Production Plant from Marine Macroalgae (FP7 Project BioWALK4Biofuels) Cover

Energetic and Environmental Impacts Related to Transport and Assembling Processes in ABiogas Production Plant from Marine Macroalgae (FP7 Project BioWALK4Biofuels)

Open Access
|Mar 2011

References

  1. AA.VV. 2009. BioWALK4Biofuels - Description of Work. 2009.
  2. Bastianoni, S., et al. 2008. Biofuel potential production from the Orbetello Lagoon macroalgae: A comparison with sunflower feedstock. Biomass & Bioenergy. 2008, 32, p. 619-628.
  3. Bidwell, R. G. S., McLachlanJ. e Loyd, N. D.H. 1985. Tank Cultivation of Irish Moss, Chondrus crispus Stackh. Botanica Marina. 1985, 28, p. 87-97.
  4. Boustead, I. e Hancock, G. F. 1979. Handbook of industrial energy analysis. s.l.: Halsted press, 1979. p. 422. ISBN 0470264926.
  5. Bruhn, A., et al. 2010. Biofuels from Ulva Lactuca. Bioresource technology. 2010.
  6. Carlsson, A. S., et al. 2007. Epobio Project: "Micro and Macro algae utility for industrial applications. 2007.
  7. Chynoweth, D. P. 2002. Review of biomethane from marine biomass. Gainesville, FL: University of Florida - Department of agricultural and biological engineering, 2002.
  8. Chynoweth, D. P., et al. 1993. Biochemichal methane potential of biomass and waste feedstocks. Biomass & Bioenergy. 1993, 5, p. 95-111.
  9. Cuèllar, Amanda D. e Webber, Michael E. 2008. Cow power: the energy and emissions benefits of converting manure to biogas. Environmetntal Research Letters. 2008, Vol. 3, 3.
  10. de Padua, M., Fontoura, P. S.S. e Mathias, A. L. 2004. Chemical composition of Ulvaria oxysperma Bliding, Ulva Lactuca and Ulva Fasciata. Brazilian archives of biology and technology. 2004.
  11. Dismukes, Charles G., Carrieri, Damian e Bennette, Nicholasl. 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current opinion in Biotechnology. 2008, 19, p. 235-240.
  12. Doug, Ernst. 2010. Marine Macroalgae Aquaculture. [Documento PDF] Manchester WA: Soliv International, 2010.
  13. Ebata, Hiroki, et al. 2007. Possibility of Land-based cultivation of green alga Ulva Prolifera by saline groundwater. aquaculture science. 2007.
  14. Amlinger, F. 2006. Ecologically sound use of biowaste of E. U. Conference: "Biowaste management in the EU 25: summarizing the results of the questionnaire". Brussels: s.n., 2006.
  15. AA.VVFAO, (Food and Agriculture Organization of the United Nations. 1997. Effects of environmetnal variables on between-years variation of Ulva Growth and biomass in a eutrphic brackish lake. 1997, Agricultural Services Bulletin. ISBN 92-5-104059-1.
  16. Enomoto, K. e Hirose, H. 1972. Culture studies on artificially induced aplanospores in the marine macroalgae Boergesenia Forbesii (HJarvey) Feldman (Chlorophyceae, Siphonoclades). Phycologia. 1972.
  17. Filipowska, Anna e Lunecki, Ludwik. 2008. Utilisation of macrolgae from the sopot beach (Baltic Sea). OCEANOLOGIA. 2008, 50, p. 255-273.
  18. Fortes, M. D. e Luning, K. 1980. Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. HELGOLANDER MEERESUNTERSUCHUNGEN. 1980.
  19. Gao, Shan, Xiayoun, Chen e Wang, Guance. 2010. A strategy for the proliferation of Ulva Prolifera, main causative species of green tides, with formation of sporangia by fragmentation. journal plos one. 2010, Vol. 5, p. 1-7.
  20. Gerardi, Michael H. 2003. The microbiology of anaerobic digesters. s.l.: Michael H. Gerardi, 2003. Print ISBN: 9780471206934.
  21. Giusti, Elisabetta e Marsili-Libelli, Stefano. 2004. Modelling the interactions between nutrients and the submerged vegetation in the Orbetello Lagoon. Ecological Modelling. 2004, 184, p. 141-161.
  22. Gordillo, Francisco J. L., Niell, Xavier F. e Figueroa, Felix L. 2000. Nonphotosynthetic enhanchement of growth by high CO2 level in the nitrophilic seaweed Ulva Rigida C. Agardh. Planta. 2000, 213, p. 64-70.
  23. Habig, C., Debusk, T. A. e Ryther, J. H. 1984. The effect of nitrogen content on methane production by the marine-algae Gracilaria Tikvahiae and Ulva sp. Biomass. 1984.10.1016/0144-4565(84)90037-4
  24. Hernández, Ignacio, et al. 2006. Integrated outdoor culture of two estuarine macroalgae as biofilters for dissolved nutrients from Sparus auratus waste waters. Journal of Applied Phycology. 2006.10.1007/s10811-005-9006-6
  25. Hiraoka, Masanori e Oka, Naohiro. 2007. Tank cultivation of Ulva Prolifera in deep seawater using a new "germling cluster" method. Journal of Applied phycology. 2007, 20, p. 97-102.
  26. ISO 14040 Gestione ambientale - Valutazione dek ciclo di vita - Principi e quadri di riferimento. UNI, EN. 1998. 1998.
  27. ISO 14041 Gestione ambientale - Valutazione del ciclo di vita - Definizione dell'obiettivo e del campo di applicazione e analisi di inventario. UNI, EN. 1999. 1999.
  28. ISO 14042 Environmental management - Life cycle assessment - Life cycle impact assessment. EN. 1996. 1996.
  29. Kelly, Maeve S. e Dworjanyn, Symon. 2008. The potential of marine biomass for anaerobic biogas production: a feasibility study with reccomandations for furter research. s.l.: The Crown Estate - Scottish Association for Marine Science, 2008. p. 103. ISBN 978-1-906410-05-6.
  30. Kerner, K. N., Hanssen, J. F. e Pedersen, T. A. 1991. Anaerobic digestion of waste sludges from the alginate extraction process. Bioresource technology. 1991, 37, p. 17-24.
  31. Khanal, Samir. 2008. Anaerobic biotechnology for bioenergy production: principles and applications. s.l.: Wiley, John & Sons, Incorporated, 2008. p. 320. ISBN 0813823463.10.1002/9780813804545
  32. Neori, Amir.Macro-algal (Seaweed) Biomass: an Attractive Algal Biofuel. s.l.: Israel Oceanographic & Limnological Research Ltd. National Center for Mariculture, Eilat, Israel.
  33. Mageswaran, R e Sivasubramanian, S. 1984. Mineral and protein content of some marine algae from costal areas of Northern Sri Lanka. J. Natn. Sci. Coun. Sri Lanka. 1984, Vol. 2, 12, p. 179-189.
  34. Michalak, Izabela e Chojnacka, Katarzyna. 2009. Edible macroalga Ulva prolifera as microelemental feed supplement for livestock: the fundamental assumptions of the production method. World Journal of Microbiologic Biotechnology. 2009.10.1007/s11274-009-9976-7
  35. Morand, P., Briand, X. e Charlier, R. H. 2006. Anaerobic digestion of Ulva sp.3. Liquefaction juices extraction by pressign and techno economic budget. Journal of applied phycology. 2006, 18, p. 741-755.
  36. Morand, Philippe e Briand, Xavier 1998. Anaerobic digestion of ULVA sp.2 Study of Ulva degradation and methanisation of liquefaction juices. Journal of applied phycology. 1998, Vol. 11, p. 165-177.
  37. Morand, Philippe e Briand, Xavier. 1997. Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation. Journal of Applied Phycology. 1997, 9, p. 511-524.
  38. Mota da Silva, Vilma, et al. 2008. Determination of moisture content and water activity in algae and fish by thermoanalytical techniques. Quimica Nova. 2008.10.1590/S0100-40422008000400030
  39. Pedersen, M. F. e Borum, J. 1996. Nutrient control of algal growth in estuarine waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar. Ecol. Prog. Ser. 1996, 142, p. 261-272.
  40. Reddy, C. R. K., Gupta, Manoj K. e Mantri, Vaibhav A. 2008. Seaweed protoplasts: status, biotechnological perspectives and needs. Journal of applied phycology. 2008.
  41. Reddy, C. R.K. e Fujita, Y.Regeneration of protoplasts from Enteromorpha (Ulvales, Chlorophyta). Protoplasts in axenic culture. Botanica Marina. 99, p. 483-490.
  42. Reddy, C. R.K. e Shikh Dipakkore, G. Rajakrishna Kumar, Bhavanath Jha, Donald P. Cheneyb and Yuji Fujitac. 2006. An improved enzyme preparation for rapid mass production of protoplasts as seed stock for aquaculture of macrophytic marine green algae. Aquaculture. 2006, 260, p. 290-297.
  43. Reddy, C. R.K., FUJITA, Y. e BAJAJ, Y. P.S. 1994. Somatic Hybridization in Algae. Biotechnology in Agriculture and Forestry. 1994.10.1007/978-3-642-57945-5_33
  44. Ross, A. B., et al. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresource technology. 2008.10.1016/j.biortech.2007.11.03618194859
  45. Rota Guido Srl. Impianti di recupero biogas. Sito Web Società Rota Guido Srl. [Online] [Riportato: 30 giugno 2010.] http://www.rotaguido.it/prodotti/recupero-biogas.html
  46. Rusig, Anne-Marie e Cosson, Joel. 2001. Plant regenration from protoplasts of Enteromorpha intestinalis as seedstock for macroalgal culture. Journal of applied phycology. 2001.
  47. Wise, D. L. 1981. Probing the feasibility of large scale aquatic biomass energy farms. Solar energy. 1981, 26, p. 455-457.
  48. Yantovski, E. 2008. Seaweed Ulva photosynthesis and zero emissions power generation. 2008.10.3103/S1068375508020117
  49. Zou, Dinghui e Gao, Kunshan. 2009. Effects of elevated CO2 on the red seaweed Gracilaria Lemaneiformis grown at different irradiance levels. Phycologia. 2009, 6, p. 510-517.
  50. Zublena, J. P., Barker, J. C. e Carter, T. A. 1997. Poultry manure as a fertilizer source. soilfacts. 1997.
DOI: https://doi.org/10.2478/v10145-010-0030-7 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 16 - 27
Published on: Mar 3, 2011
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2011 Andrea Cappelli, Emanuele Gigli, Luca Muzi, Roberto Renda, Silvano Simoni, published by Riga Technical University
This work is licensed under the Creative Commons License.

Volume 5 (2010): Issue -1 (December 2010)