Have a personal or library account? Click to login
Biogas from Marine Macroalgae: a New Environmental Technology — Life Cycle Inventory for a Further LCA Cover

Biogas from Marine Macroalgae: a New Environmental Technology — Life Cycle Inventory for a Further LCA

Open Access
|Jan 2011

References

  1. Directive 2009/28/EC, on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF
  2. Directive 2007/71/EC, on the promotion of electricity produced from renewable energy sources in the internal electricity market http://www.erec.org/fileadmin/erec_docs/Projcet_Documents/RES2020/LATVIA_RES_Policy_Review_09_Final.pdf
  3. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. http://eurex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31999L0031:EN:NOT
  4. Council Directive of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). http://ec.europa.eu/environment/water/water-nitrates/directiv.htm
  5. FAO - Food and Agriculture Organization, 2008. The State of Food and Agriculture. Biofuels: prospects, risks and opportunities. Rome, Italy.
  6. Von Blottnitz H. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life-cycle perspective. Accepted for Publication in the Journal of Cleaner Production, March 1, 2006.10.1016/j.jclepro.2006.03.002
  7. Biowaste and algae knowledge for the production of 2nd generation biofuels (BioWALK4Biofuels). Annex I - "Description of Work". Grant agreement no.: 241383, April 2010, Rome. www.biowlak4biofuel.ue
  8. Putt R. Algae as a Biodiesel Feedstock: A Feasibility Assessment. Center for Microfibrous Materials Manufacturing (CM3) - Department of Chemical Engineering. Auburn University, Alabama, USA, November 20, 2007.
  9. Walter M., Kondrad S., Buyer J. Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. Journal of of Applied Phycology, 2008, N. 20, pp.1079-1085.10.1007/s10811-008-9314-8
  10. Nallathambi Gunaseelan V. Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy, Vol. 13, Issues 1-2, 1997, pp. 83-114.10.1016/S0961-9534(97)00020-2
  11. De Mes T. Z. D., Stams A. J. M., Reith J. H., Zeeman G. Methane production by anaerobic digestion of wastewater and solid wastes. Biomethane & Bio-hydrogen. Edited by: J. H. Reith, R. H. Wijffels and H. Barten Dutch Biological Hydrogen Foundation, 2003.
  12. Reddy C. R. K., Gupta M. K., Mantri V. A., Jha B. Seaweed protoplasts: status, biotechnological perspectives and needs. Applied Phycology Journal, 2008, Vol. 20, N. 5, October, pp. 619-632.10.1007/s10811-007-9237-9
  13. Wenisch S., Monier E. Life Cycle Assessment of different of biogas from anaerobic fermentation of separately collected biodegradable waste in France. ADEME - French Agency for the Environment and Energy Management, 2007, France.
  14. Njakou Djomo S. PhD. Life Cycle Assessment of Biohydrogen production and applications for modeling the transition to hydrogen economy, PhD thesis, 2009, Riga, 149 p.
  15. Bidwell RGS, McLachlan J and Lloyd, NDH. Tank cultivation of Irish Moss, Chondrus crispus Stackh. Botanica Marina, 1985. N. 2828:, pp. 87-97.
  16. Courtesy of own data from National Environmental Research Institute, Aarhus University, 2010. Nordre Ringgade, 8000, AARHUS Denmark www.au.dk
  17. Courtesy of own data from Ecoil srl, Roma, 2010, via Adolfo Ravà, 49, 00142 Roma www.ecoil.biz
  18. Gordillo F. J. L., F., Xavier Niell F., Figueroa F. L. Non photosintetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta), Planta, 2001, N. 213, pp. 64-70.10.1007/s004250000468
  19. Hiraoka M., Oka N. Tank cultivation of Ulva prolifera in deep seawater using a new "germling cluster" method, Journal of Applied Phycology, 2008, N. 20, pp. 97-102.10.1007/s10811-007-9186-3
  20. The chemical composition of seawaterhttp://www.seafriends.org.nz/oceano/seawater.htm#gases
  21. Michalak I., Chojnacka K. Edible macroalga Ulva prolifera as microelemental feed supplement for livestock: the fundamental assumptions of the production method. World Journal of Microbiolology and Biotechnology, 2009, N. 25, pp. 997-1005.10.1007/s11274-009-9976-7
  22. Global emission model for integrated systems, LCA software and database version 4.5 (GEMIS 4.5) : diesel-DE-2005
  23. De Padua M., Fontoura P. S. G., and Mathias A. L. 2004. Chemical composition of Ulvaria oxysperma (Kützing) Bliding, Ulva lactuca (Linnaeus) and Ulva facisata (Delile). Brazilian archives of biology and technology 47:49-55.10.1590/S1516-89132004000100007
  24. Habig C., Debusk T. A., and Ryther J. H. 1984. The Effect of Nitrogen-Content on Methane Production by the Marine-Algae Gracilaria-Tikvahiae and Ulva Sp. Biomass 4:239-251.10.1016/0144-4565(84)90037-4
  25. Briand X. and Morand P. 1997. Anaerobic digestion of Ulva sp. 1. Relationship between Ulva composition and methanisation. Journal of Applied Phycology 9:511-524.
  26. Morand P., Briand X., and Charlier R. H. 2006. Anaerobic digestion of Ulva sp 3. liquefaction juices extraction by pressing and a technico-economic budget. Journal of Applied Phycology 18:741-755.
  27. Bruhn A., Dahl J., Jensen P. D., Nielsen H. B., Nikolaisen L. S., Rasmussen M. B., and Thomsen A. B. Biofuels from Ulva lactuca. In prep. for Bioresource Technology
  28. Habig C., Andrews D. A., and Ryther J. H. 1984. Nitrogen Recycling and Methane Production Using Gracilaria-Tikvahiae - A Closed System Approach. Resources and Conservation 10:303-313.10.1016/0166-3097(84)90023-3
  29. Courtesy of own data from Power Ventures, Milano, 2010, Via Tamburini, 6, 20123 Milano www.powerventures.it
  30. Department of soil science of North Carolina university. Poultry Manure as a Fertilizer Source, North Carolina Cooperative Extension Service Publication AG-439-5. Last Web Update: December 1997 http://www.soil.ncsu.edu/publications/Soilfacts/AG-439-05/
  31. John Gelegenisa, Dimitris Georgakakisb, Irini Angelidakic, Vassilis Mavrisa, Optimization of biogas production by co-digesting whey with diluted poultry manure, Renewable Energy 32, 2007, pp 2147-2160.10.1016/j.renene.2006.11.015
  32. Kaparaju P., Ellegaard L., Angelidaki I., Optimisation of biogas production from manure through serial digestion: Lab-scale and pilot-scale studies, Bioresource Technology N. 100, 2009, pp. 701-709.10.1016/j.biortech.2008.07.02318757195
  33. Hamed M. El-Mashad, Ruihong Zhang, Biogas production from codigestion of dairy manure and food waste, Bioresource Technology N. 101, 2010, pp. 4021-4028.10.1016/j.biortech.2010.01.02720137909
  34. Xiao Wua, Wanying Yao b, Jun Zhu, Curtis Miller, Biogas and CH4 productivity by co-digesting swine manure with three crop residues as an external carbon source, Bioresource Technology, N. 101, 2010, pp. 4042-4047.10.1016/j.biortech.2010.01.05220138757
  35. Global emission model for integrated systems, LCA software and database version 4.5 (GEMIS 4.5): biogas generic.
  36. Latvian Environment, Geology and Meteorology Centre http://www.meteo.lv/public/hidrometeo_dati.html
  37. United Nations Framework Convention on Climate Change http://unfccc.int/2860.php
DOI: https://doi.org/10.2478/v10145-010-0024-5 | Journal eISSN: 2255-8837 | Journal ISSN: 1691-5208
Language: English
Page range: 97 - 108
Published on: Jan 17, 2011
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2011 Francesco Romagnoli, Dagnija Blumberga, Emanuele Gigli, published by Riga Technical University
This work is licensed under the Creative Commons License.

Volume 4 (2010): Issue -1 (June 2010)