Have a personal or library account? Click to login
Lennukilidari ja spektraalse kaugseireandmestiku kasutamine metsa peamiste takseertunnuste hindamiseks Aegviidu katsealal / Estimation of main forest inventory variables from spectral and airborne lidar data in Aegviidu test site, Estonia Cover

Lennukilidari ja spektraalse kaugseireandmestiku kasutamine metsa peamiste takseertunnuste hindamiseks Aegviidu katsealal / Estimation of main forest inventory variables from spectral and airborne lidar data in Aegviidu test site, Estonia

Open Access
|Sep 2014

Abstract

Field measurements from 450 sample plots, airborne lidar data and spectral images from Aegviidu, Estonia, 15 by 15 km test site were used to analyse options to estimate main forest inventory variables using remote sensing data. Up to 7 m random error in location of 15 m radius sample plots within homogeneous stands causes usually about 0.5 m standard deviation in lidar pulse return height distribution percentiles. Forest mean height can be predicted with linear relationship from 80th percentile of lidar pulse return height distribution. Upper percentiles of pulse return height distribution are not significantly affected by omitting returns from ground and forest understorey vegetation. Total stem volume in forest can be predicted by using 80th percentile, 25th percentile and canopy cover as model arguments with less than 70 m3 ha-1 standard error. Best species specific stem volume models had 10 m3 ha-1 smaller standard error.

DOI: https://doi.org/10.2478/v10132-012-0003-7 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 27 - 41
Submitted on: Jan 31, 2013
Accepted on: Mar 25, 2013
Published on: Sep 19, 2014
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2014 Mait Lang, Johannes Anniste, Tauri Arumäe, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.