Have a personal or library account? Click to login
Metsa lehepinnaindeksi kaardistamine lennukilidari, satelliidipiltide ja maapealsete mõõtmiste abil Järvselja VALERI testalal / Leaf area index mapping with airborne lidar, satellite images and ground measurements in Järvselja VALERI test site Cover

Metsa lehepinnaindeksi kaardistamine lennukilidari, satelliidipiltide ja maapealsete mõõtmiste abil Järvselja VALERI testalal / Leaf area index mapping with airborne lidar, satellite images and ground measurements in Järvselja VALERI test site

Open Access
|Sep 2014

References

  1. Adermann, V. 2010. Estonia. - Tomppo, E., Gschwantner, T., Lawrence, M., McRoberts, R.(eds.). National Forest Inventories. Springer, 171-184.
  2. Ahern, F.J., Erdle, T., Maclean, D.A., Kneppeck, I.D. 1991. A quantitative relationship between forest growth rates and Landsat Thematic Mapper reflectance measurements. - International Journal of Remote Sensing, 12(3), 387-400.
  3. Anderson, M.C. 1964. Studies of the woodland light climate. I. The photographic computation of light condition. - Journal of Ecology, 52, 27-41.
  4. Baltsavias, E.P. 1999. Airborne laser scanning: basic relations and formulas. - ISPRS Journal of Photogrammetry & Remote Sensing, 54, 199-214.
  5. Brown, L., Chen, J.C., Leblanc, S.G., Cihlar, J. 2000. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests. - Remote Sensing of Environment, 71, 6-25.
  6. Chason, J.W., Baldocchi, D.D., Huston, M.A. 1991. Comparison of direct and indirect methods for estimating forest canopy leaf-area. - Agricultural and Forest Meteorology, 57, 107-128.
  7. Chen, J.M., Black, T.A. 1992. Defining leaf-area index for non-flat leaves. - Plant, Cell & Environment, 15, 421-429.
  8. Evans, G.C., Coombe, D.E 1959. Hemispherical and woodland canopy photography and the light climate. - Journal of Ecology, 47, 123-144.10.2307/2257250
  9. Fassnacht, K.S., Gower, S.T., Norman, J.M., McMurtrie, R.E. 1994. A comparison of optical and direct methods for estimating foliage surface area index in forests. - Agricultural and Forest Meteorology, 71, 183-207.
  10. Fernandes, R.A., Miller, J.R., Chen, J.M., Rubinstein, I.G. 2004. Evaluating image-based estimates of leaf area index in boreal conifer stands over a range of scales using high-resolution CASI imagery. - Remote Sensing of Environment, 89, 200-216.10.1016/j.rse.2002.06.005
  11. Frazer, G.W., Trofymow, J.A., Lertzman, K.P. 1997. A method for estimating canopy openness, effective leaf area index, and photosynthetically active photon flux density using hemispherical photography and computerized image analysis techniques. - Information Report BC-X-373. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC.
  12. Garrigues, S., Allard, D., Baret, F., Weiss, M. 2006. Quantifying spatial heterogeneity at the landscape scale using variogram models. - Remote Sensing of Environment Volume 103(1), 81-96.
  13. Gemmell, F., Varjo, J., Strandstrom, M., Kuusk, A. 2002. Comparison of measured boreal forest characteristics with estimates from TM data and limited ancillary information using reflectance model inversion. - Remote Sensing of Environment, 81(2-3), 365-377.
  14. GEOLAND. 2011. BioPar Products. [WWW document]. - URL http://www.geoland2.eu/portal/. [Accessed August 1, 2011].
  15. Gower, S.T., Norman, J.M. 1991. Rapid estimation of leaf-area index in conifer and broad-leaf plantations. - Journal of Ecology, 72, 1896-1900.
  16. Herbert, T.J. 1986. Calibration of fisheye lenses by inversion of area projections. - Applied Optics, 25, 1875-1876.
  17. Heritage, G.L., Large, A.R.G. 2009. Principles of 3D Laser Scanning. - Laser Scanning for the Environmental Sciences, 21-34. Eds Heritage, G.L., Large. John Wiley & Sons, Ltd., Publication, West Sussex, UK.10.1002/9781444311952.ch2
  18. Hopkinson, C., Chasmer, L. 2009. Testing LiDAR models of fractional cover across multiple forest ecozones. - Remote Sensing of Environment, 113, 275-288.
  19. Hordo, M., Kiviste, A., Sims, A. 2006. The Network of permanent sample plots for forest growth in Estonia. - Nagel, J. (ed.). Deutscher Verband Forstlicher Forschungsanstalten. Sektion Ertragskunde: Beiträge zur Jahrestagung 2006. Göttingen, 115-121.
  20. Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F. 2004. Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography. - Agricultural and Forest Meteorology, 121, 19-35.
  21. Jonckheere, I., Nackaerts, K., Muys, B., Coppin, P. 2005. Assessment of automatic grap fraction estimation of forests from digital hemispherical photography. - Agricultural and Forest Meteorology, 132, 96-114.
  22. Knyazikhin, Y., Martonchik, J.V., Myneni, R.B., Diner, D.J., Running, S.W. 1998. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. - Journal of Geophysical Research, 103, 32257−32274.
  23. Kodar, A., Kutsar, R., Lang, M., Lükk, T., and Nilson, T. 2008. Leaf area indices of forest canopies from optical measurements. - Baltic Forestry, 14(2), 185-194.
  24. Korhonen, L. Korpela, I., Heiskanen, J., Maltamo, M. 2011. Airborne discrete-return LIDAR data in the estimation of vertical canopy cover, angular canopy closure and leaf area index. - Remote Sensing of Environment, 115, 1065-1080.
  25. Kucharik, C.J., Norman, J.M, Gower, S.T. 1998. Measurements of branch area and adjusting leaf area index indirect measurements. - Agricultural and Forest Meteorology, 91(1-2), 69-88.
  26. Lang, M. 2006. The performance of foliage mass and crown radius models in forming the input of a forest reflectance model. - PhD thesis. ISBN-10: 9949-426-16-2. Eesti Maaülikool, 201 pp.
  27. Lang, M. 2010. Estimation of crown and canopy cover from airborne lidar data. - Forestry Studies / Metsanduslikud Uurimused, 52, 5-17.
  28. Lang, M. Lükk, T., Rähn, A., Sims, A. 2005. Kasvukäiguproovitükkide kaugseire võimalusi. (Change detection on permanent forest growth sample plots using satellite images). - Metsanduslikud Uurimused / Forestry Studies, 43, 24-37. (In Estonian).
  29. Lang, M., Kurvits, V. 2007. Restoration of tree crown shape for canopy cover estimation. - Forestry Studies / Metsanduslikud Uurimused, 46, 23-34.
  30. Lang, M., Kuusk, A., Mõttus, M., Rautiainen, M., Nilson, T. 2010. Canopy gap fraction estimation from digital hemispherical images using sky radiance models and a linear conversion method. - Agricultural and Forest Meteorology, 150(1), 20-29.
  31. Lang, M., Nilson, T., Kuusk, A., Kiviste, A., Hordo, M. 2007. The performance of foliage mass and crown radius models in forming the input of a forest reflectance model: A test on forest growth sample plots and Landsat 7 ETM+ images. - Remote Sensing of Environment, 110, 445-457.10.1016/j.rse.2006.11.030
  32. Liang, S. 2004. Quantitative remote sensing of land surfaces. 534 pp. John Wiley & Sons, Inc. Hoboken, New Yersey.10.1002/047172372X
  33. Marklund, L.G. 1988. Biomass functions for pine, spruce and birch in Sweden. - Technical Report, Swedish University of Agricultural Sciences, Department of Forest Survey, Umeå, Sweden, 45, 73 pp.
  34. McGaughey, R.J. 2010. FUSION/LDV: Software for LIDAR Data Analysis and Visualization. July 2010 - FUSION Version 2.90. United States Department of Agriculture Forest Service Pacific Northwest Research Station, 150 pp.
  35. Morsdorf F., Benjamin Kötz, B., Meier, E., Itten, K.I., Allgöwer, B. 2006. Estimation of LAI and fractional cover from small footprint laser scanning data based on gap fraction. - Remote Sensing of Environment, 104, 50-61.
  36. Nilson, T. 1994. Remote sensing of forests. (Metsade kaugseire alused). Eesti Põllumajandusülikooli Metsakorralduse Instituut. 160 pp.
  37. Nilson, T. 1999. Inversion of gap fraction data in forest stands. - Agricultural and Forest Meteorology, 98-99, 437-448.
  38. Nilson, T., Kuusk, A. 2004. Improved algorithm for estimating canopy indices from gap fraction data in forest canopies. - Agricultural and Forest Meteorology, 124(3-4), 157-169.
  39. Noe, S.M., Kimmel, V., Hüve, K., Copolovici, L., Portillo- Estrada, M., Püttsepp, Ü., Jõgiste, K., Niinemets, Ü., Hörtnagl, L., Wohlfahrt, G. 2011. Ecosystem- scale biosphere-atmosphere interactions of a hemiboreal mixed forest stand at Järvselja, Estonia. - Forest Ecology and Management, 262(2), 71-81.
  40. Poilvé, H., 2011. Towards an operational GMES land monitoring core service. BioPar product user manual. MERIS FR Biophysical Products. Issue 1.40. EC Proposal Reference No. FP-7-218795. Astrium GeoInformation Services. 46 pp.
  41. Rautiainen, M., Stenberg, P., Nilson, T. 2005. Estimating canopy cover in Scots pine stands. - Silva Fennica, 39(1), 137-142.
  42. Sea, W.B., Choler, P., Beringer, J., Weinmann, R.A, Hutley, L.B, Leuning, R. 2011. Documenting improvement in leaf area index estimates from MODIS using hemispherical photos for Australian savannas. - Agricultural and Forest Meteorology, 151, 1453-1461.
  43. Stenberg, P., Rautiainen, M., Manninen, T., Voipio, P., Smolander, H. 2004. Reduced simple ratio better than NDVI for estimating LAI in Finnish pine and spruce stands. - Silva Fennica 38(1): 3-14.10.14214/sf.431
  44. Tamm, T., Remm, K. 2009. Estimating the parameters of forest inventory using machine learning and the reduction of remote sensing features. - International Journal of Applied Earth Observation and Geoinformation, 11, 290-297.
  45. Tan, B., Woodcock, C.E., Hu, J., Zhang, P., Ozdogan, M., Huang, D., Yang, W., Knyazikhin,Y., Myneni, R.B. 2006. The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-toband registration across resolutions. - Remote Sensing of Environment, 105, 98-114.
  46. Uri, V., Lõhmus, K., Kiviste, A., Aosaar, J. 2009. The dynamics of biomass production in relation to foliar and root traits in a grey alder (Alnus incana (L.) Moench) plantation on abandoned agricultural land. - Forestry, 82, 61-74.10.1093/forestry/cpn040
  47. Ustin, S.L. 2004. Remote Sensing for natural resource management and environmental monitoring. Manual of remote sensing. John Wiley & Sons, Inc.
  48. Vain A., Kaasalainen, S., Pyysalo, U., Krooks, A., Litkey, P. 2009. Use of naturally available reference targets to calibrate airborne laser scanning intensity data. - Sensors, 9, 2780-2796; doi:10.3390/ s90402780.
  49. Wang, Y., Woodcock, C.E., Buermann, W., Stenberg, P., Voipio, P., Smolander, H., et al. 2004. Evaluation of the MODIS LAI algorithm at a coniferous forest site in Finland. - Remote Sensing of Environment, 91, 114−127.
  50. Watson, D.J. 1947. Comparative physiological studies in the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. - Annals of Botany, 11, 41-76.10.1093/oxfordjournals.aob.a083148
  51. Zianis, D., Muukkonen, P., Mäkipää, R., Mencuccini, M. 2005. Biomass and stem volume equations for tree species in Europe. - Silva Fennica Monographs, 4, 1-63.
DOI: https://doi.org/10.2478/v10132-011-0099-1 | Journal eISSN: 1736-8723 | Journal ISSN: 1406-9954
Language: English
Page range: 11 - 32
Submitted on: Jan 12, 2012
Accepted on: Mar 25, 2012
Published on: Sep 19, 2014
Published by: Estonian University of Life Sciences
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2014 Ave Kodar, Mait Lang, Tauri Arumäe, Alo Eenmäe, Jan Pisek, Tiit Nilson, published by Estonian University of Life Sciences
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.