Have a personal or library account? Click to login
Notes on A Preimage-Resistant Hash Function Cover
By: János Folláth  
Open Access
|Feb 2013

References

  1. [1] AUMASSON, J.-R: Cryptanalysis of a hash function based on norm form equations, Cryptologia 33 (2009), 1-4.10.1080/01611190802306793
  2. [2] BÉRCZES, A.-FOLLÁTH, J.-PETHŐ, A.: On a family of preimage-resistant functions, Tatra Mt. Math. Publ. 47 (2010), 1-13.
  3. [3] BÉRCZES, A.-JÁRÁSI, L: An application of index forms in cryptography, Period. Math. Hungar. 58 (2008), 35-45.10.1007/s10998-009-9035-8
  4. [4] BÉRCZES, A.-KÖDMÖN, J.-PETHŐ, A.: A one-way function based on norm form equations, Period. Math. Hungar. 49 (2004), 1-13.10.1023/B:MAHU.0000040535.45427.38
  5. [5] BUCHMANN, J.-PAULUS, S.: A one-way function based on ideal arithmetic in number fields, Lecture Notes in Comput. Sei. 1294 (1997), 385-394.10.1007/BFb0052250
  6. [6] CHAO, L. R.-LIN, Y. C.: Associative one-way function and its significances to crypto-graphics, Internat. J. Inform. Management Sci. 5 (1994), 53-59.
  7. [7] COULTER, R. S.: Planar monomials over fields of prime square order, Proc. Amer. Math. Soc. 134 (2006), 3373-3378.10.1090/S0002-9939-06-08346-8
  8. [8] COULTER, R. S.-HENDERSON, M.: A note on the roots of trinomials over a finite field, Bull. Austral. Math. Soc. 69 (2004), 429-432.10.1017/S0004972700036200
  9. [9] COULTER, R. S.-MATTHEWS R. W.: Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr. 10 (1997), 167-184.10.1023/A:1008292303803
  10. [10] DEMBOWSKI, P.-OSTROM, T. G.: Planes of order n with collineation groups of order n2, Math. Z. 103 (1968), 239-258.10.1007/BF01111042
  11. [11] FORRÈ, R.: The strict avalanche criterion: spectral properties of Boolean functions and an extended definition, in: CRYPTO ’88-Advances in Cryptology (S. Goldwasser, ed.), Santa Barbara, California, USA, 1988, Lecture Notes in Comput. Sci., Vol. 403, Springer-Verlag, New York, NY, USA, 1990, pp. 450-468.10.1007/0-387-34799-2_31
  12. [12] GLUCK, D.: A note on permutation polynomials and finite geometries, Discrete Math. 80 (1990), 97-100.10.1016/0012-365X(90)90299-W
  13. [13] GOLDREICH, O.-LEVIN, L.-NISAN, N.: On constructing 1-1 one-way functions, in: Proc. of the Electronic Colloquium on Computational Complexity (ECCC), Vol. 2, 1995, pp. 1-11.
  14. [14] HEMASPAANDRA, L. A.-ROTHE, J.: Creating strong, total, commutative, associative one-way functions from any one-way function in complexity theory, J. Comput. System Sci. 58 (1999), 648-659.10.1006/jcss.1998.1613
  15. [15] HIRAMINE, Y.: A conjecture on affine planes of prime order, J. Combin. Theory Ser. A 52 (1989), 44-50.10.1016/0097-3165(89)90060-5
  16. [16] LI, Y.-CUSICK, T. W.: Strict avalanche criterion over finite fields, Math. Cryptology 1 (2008) 65-78.
  17. [17] LIDL, R.-NIEDERREITER, H.: Finite Fields. Cambridge University Press, Cambridge, 1997.10.1017/CBO9780511525926
  18. [18] MERKLE, R. C.: A fast software one-way hash function, J. Cryptology 3 (1990), 43-58.10.1007/BF00203968
  19. [19] MENEZES, A. J.-VAN OORSCHOT, P. C.-VANSTONE, S. A.: Handbook of Applied Cryptography. CRC Press, Boca Raton, 1997.
  20. [20] PAPADIMITRIOU, C. H.: Computational complexity. Addison-Wesley Publ. Comp., Reading, MA, 1994.
  21. [21] RÓNYAI, L.- SZONYI, T.: Planar functions over finite fields, Combinatorica 9 (1989), 315-320.10.1007/BF02125898
  22. [22] SCHNEIER, B.: Applied Cryptography. John Wiley & Sons, New York, 1996.
  23. [23] SUN, Q.: A kind of trap-door one-way function over algebraic integers, J. Sichuan Univ., Nat. Sci. Ed. 2 (1986), 22-27.
  24. [24] WEBSTER, A. F.-TAVARES, S. E.: On the design of S-boxes, in: Advances in Cryptology-CRYPTO ’85 (H. C. Williams, ed.), Santa Barbara, 1985, Lecture Notes in Comput. Sci., Vol. 218, Springer-Verlag, New York, 1986, pp. 523-534.10.1007/3-540-39799-X_41
DOI: https://doi.org/10.2478/v10127-012-0041-9 | Journal eISSN: 1338-9750 | Journal ISSN: 12103195
Language: English
Page range: 103 - 117
Published on: Feb 1, 2013
Published by: Slovak Academy of Sciences, Mathematical Institute
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2013 János Folláth, published by Slovak Academy of Sciences, Mathematical Institute
This work is licensed under the Creative Commons License.